精英家教网 > 高中数学 > 题目详情
已知抛物线y=4x2-4(m+2)x+m2+4m-5交x轴于A,B两点,交y轴于点C.若-5<m<1,试求三角形ABC面积S的最大值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:设出抛物线与x轴的两交点坐标,利用根与系数关系得到抛物线与x轴的两个交点间的距离,然后代入三角形的面积公式,配方后求得三角形ABC面积S的最大值.
解答: 解:抛物线y=4x2-4(m+2)x+m2+4m-5所对应的方程为4x2-4(m+2)x+m2+4m-5=0,
△=[-4(m+2)]2-16(m2+4m-5)=144>0,
设抛物线与x轴的交点坐标为(x1,0),(x2,0),
则根据根与系数的关系可得:x1+x2=m+2,x1x2=
1
4
(m2+4m-5),
∴(x1-x22=(x1+x22-4x1x2=(m+2)2-(m2+4m-5)=9,
∴|x1-x2|=3.
抛物线与y轴的交点坐标为 (0,m2+4m-5)
∵-5<m<1,
∴m2+4m-5=(m+5)(m-1)<0,
∴三角形ABC的高是(-m2-4m+5),
∴S△ABC=
1
2
(-m2-4m+5)×3=-
3
2
(m+2)2+
27
2

∴m=-2时,函数有最大值,最大面积是
27
2
点评:本题是直线与圆锥曲线的综合题,关键是明确题中所给条件,借助于一元二次方程的根与系数关系求解,同时训练了利用配方法求二次函数最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A={x|-1≤x<2},B={x∈Z|-1<x<3},则A∩B=(  )
A、{x|-1<x<2}
B、{-1,0,1}
C、{0,1}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

过曲线y=x3-2x-6上的点(-1,-5)作两条互相垂直的直线l1,l2,若直线l1是曲线y=x3-2x-6的切线,则直线l2的倾斜角为(  )
A、
4
B、
π
3
C、
3
D、
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的个数是(  )
(1)当x>1时,lnx>0
(2)log164=
1
2

(3)函数f(x)=2x-4的零点是(2,0)
(4)若连续函数f(x)在[-1,2]上有零点,则f(-1)•f(2)<0.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d为奇函数,且在x=-1处取得极大值2.
(Ⅰ)求f(x)解析式;
(Ⅱ)过点A(1,t)(t≠-2)可作函数f(x)象的三条切线,求实数t的取值范围;
(Ⅲ)若f(x)+(m+2)x≤x2(ex-1)对于任意的x∈[0,+∞)恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-m-ln(2x).
(Ⅰ)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明:f(x)>-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax+b在y轴上的截距为1,且曲线上一点P(
2
2
,y0)处的切线斜率为
1
3

(1)曲线在P点处的切线方程;
(2)求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)幂函数f(x)=x-1是否属于集合H?请说明理由;
(2)若函数g(x)=lg
a
x2+1
∈H,求实数a的取值范围;
(3)证明:函数h(x)=2x+x2∈H.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-x+2alnx有两个极值点x1,x2且x1<x2
(Ⅰ)求实数a的取值范围,并写出函数f(x)的单调区间;
(Ⅱ)判断方程:f(x)=(a+1)x根的个数并说明理由;
(Ⅲ)利用消元法表示出函数f(x2),利用导数研究函数f(x2)的单调性,即可证明不等式.

查看答案和解析>>

同步练习册答案