精英家教网 > 高中数学 > 题目详情
已知动点P与双曲线x2-
y2
3
=1
.的两焦点F1,F2的距离之和为大于4的定值,且|
PF1
|•|
PF2
|的最大值为9.
(1)求动点P的轨迹E的方程;
(2)若A,B是曲线E上相异两点,点M(0,2)满足
AM
MB
,求实数λ的取值范围.
分析:(1)先由双曲线的方程得到两焦点,设已知定值为2a,则|
PF
1
|+|
PF2
|=2a
,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.利用待定系数法结合基本不等式即可求得椭圆的方程;
(2)设所求直线l的方程:y=kx-2,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量关系式即可求得实数λ的取值范围
,从而解决问题.
解答:解:(1)双曲线x2-
y2
3
=1
的焦点F1(-2,0).
设已知定值为2a,则|
PF
1
|+|
PF2
|=2a
,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
.(2分)
|
PF 1
|•|
PF 2
|≤(
|
PF 1
|+
PF 2
2
) 2
=a2,
∴a2=9,b2=a2-c2=5,
∴动点P的轨迹E的方程
x2
9
+
y2
5
=1

(II)设A(x1,y1),B(x2,y2),则由点M(0,2)满足
AM
MB
,得:
-x 1=λx   2 
-2-y 1=λ(y 2+2)
  且M,A,B三点共线,设直线为l,
当直线l的斜率存在时,设l:y=kx-2,则将直线的方程代入椭圆的方程,化简得:
(5+9k2)x2-36kx-9=0,根据根与系数的关系得:
  x1+x2=
36k
5+9k  2
,x1x2=
-9
5+9k 2

将x1=-λx2,代入,消去x2,得:
(1-λ) 2
λ
=
144k 2
5+9k 2

化得:
(1-λ) 2
λ
=
144k 2
5+9k 2
=
144
5
k 2
+9

0<
(1-λ) 2
λ
< 16

解之得:实数λ的取值范围为[9-4
5
,9+4
5
].
点评:本小题主要考查圆锥曲线的轨迹问题、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P的轨迹方程为:
x2
4
-
y2
5
=1(x>2),O是坐标原点.
①若直线x-my-3=0截动点P的轨迹所得弦长为5,求实数m的值;
②设过P的轨迹上的点P的直线与该双曲线的两渐近线分别交于点P1、P2,且点P分有向线段
P1P2
所成的比为λ(λ>0),当λ∈[
3
4
3
2
]时,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修1-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标版高二(A选修2-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修2-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴.已知a=1,b=2,p=2,求点Q的坐标。

⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。

⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(上海卷理20)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴已知a=1,b=2,p=2,求点Q的坐标.

⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上.

⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

同步练习册答案