【题目】函数在点处的切线方程为.
(Ⅰ)求实数,的值;
(Ⅱ)求的单调区间;
(Ⅲ),成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】三棱锥中,侧面底面, 是等腰直角三角形的斜边,且.
(1)求证: ;
(2)已知平面平面,平面平面, ,且到平面的距离相等,试确定直线及点的位置(说明作法及理由),并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,已知点为曲线上的动点,点在线段上,且满足,动点的轨迹为.
(1)求的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
参考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都是正数的数列的前项和为,且,数列满足,.
(1)求数列、的通项公式;
(2)设数列满足,求和;
(3)是否存在正整数,,,使得,,成等差数列?若存在,求出所有满足要求的,,,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com