精英家教网 > 高中数学 > 题目详情

【题目】函数在点处的切线方程为.

(Ⅰ)求实数的值;

(Ⅱ)求的单调区间;

(Ⅲ)成立,求实数的取值范围.

【答案】(1);(2)函数的减区间是,增区间是;(3)的取值范围是..

【解析】试题分析:(Ⅰ)求得, 分别令,即可求得的值;

(Ⅱ)由(Ⅰ)得,由于在区间上为增函数,且,进而得到函数的单调区间;

(Ⅲ)构造函数,由成立,等价于,再由(Ⅱ)知当时,,即(当且仅当时取等号),即可求解实数的取值范围.

试题解析:

(Ⅰ)

依题意得,则有

(Ⅱ)由(Ⅰ)得

由于在区间上为增函数,且

则当时,;当时,

故函数的减区间是,增区间是

(Ⅲ) 因为

于是构造函数

成立,等价于

由(Ⅱ)知当时,,即恒成立.

(当且仅当时取等号)

所以函数,又时,

所以.故的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三棱锥中,侧面底面, 是等腰直角三角形的斜边,且.

(1)求证:

(2)已知平面平面,平面平面 ,且到平面的距离相等,试确定直线及点的位置(说明作法及理由),并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,已知点为曲线上的动点,点在线段上,且满足,动点的轨迹为.

(1)求的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的各项为正数,且.

(1)求的通项公式;

(2)设,求证数列的前项和<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

参考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则三棱锥的体积为( )

A. 10 B. 20 C. 30 D. 60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处取得极值.

①求的值;

②若存在,使得不等式成立,求的最小值;

(2)当时,若上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列的前项和为,且,数列满足.

(1)求数列的通项公式;

(2)设数列满足,求和

(3)是否存在正整数,使得成等差数列?若存在,求出所有满足要求的,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面 平面 是等边三角形,

的中点.

(1)求证:

(2)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案