精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期为π,且图象上的一个最低点为M( ).

(1)求f(x)的解析式及单调递增区间;

(2)当x∈[0,]时,求f(x)的值域.

【答案】(1)[ ],k∈Z;; (2)[1,2].

【解析】

(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;

(2)求出0≤x≤时f(x)的最大、最小值,即可得出函数的值域.

(1)由f(x)=Asin(ωx+φ),且T==π,可得ω=2;

又f(x)的最低点为M( )∴A=2,且sin(+φ)=-1;

∵0<φ,∴

∴f(x)=2sin(2x+);

令2kπ-≤2x+≤2kπ+,k∈Z,

解得kπ-≤x≤kπ+,k∈Z,

∴f(x)的单调增区间为[kπ-,kπ+],k∈Z;

(2)0≤x≤

≤2x+

∴当2x+=,即x=0或时,fmin(x)=2×=1,

当2x+=,即x=时,fmax(x)=2×1=2;

∴函数f(x)在x∈[0,]上的值域是[1,2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判断并证明N(x)在(﹣1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]? (参考公式:[ln(1+x)′]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示大于的整数的十位数,例如.已知都是大于的互不相等的整数,现有如下个命题:

①若,则;②

③若是质数,则也是质数;④若成等差数列,则可能成等比数列.

其中所有的真命题为( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从圆C:(x+1)2+(y﹣2)2=2外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取最小值时点P的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|. (Ⅰ)解不等式f(x+8)≥10﹣f(x);
(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|f( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且 .固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.

(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;

(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(1)根据表中数据,问是否有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:.

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案