【题目】设甲、乙两人每次射击命中目标的概率分别为 ,且各次射击相互独立,若按甲、乙、甲、乙…的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是( )
A.
B.
C.
D.
【答案】C
【解析】解:设A表示甲命中目标,B表示乙命中目标,则A、B相互独立, 停止射击时甲射击了两次包括两种情况:
①第一次射击甲乙都未命中,甲第二次射击时命中,
此时的概率P1=P( A)=(1﹣ )×(1﹣ )× = ,
②第一次射击甲乙都未命中,甲第二次射击未命中,而乙在第二次射击时命中,
此时的概率P2=P( B)=(1﹣ )×(1﹣ )×(1﹣ )× = ,
故停止射击时甲射击了两次的概率P=P1+P2= + = ;
故选C.
根据题意,分析可得:停止射击时甲射击了两次包括两种情况:①第一次射击甲乙都未命中,甲第二次射击时命中,②第一次射击甲乙都未命中,甲第二次射击未命中,而第二次射击时命中,分别由相互独立事件概率的乘法公式计算其概率,再由互斥事件的概率的加法公式计算可得答案.
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=cos( ﹣B),a=3,c=2.
(1)求 的值;
(2)求tan( ﹣B)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是偶函数,当x>0时,f(x)单调递减,设a=-21.2 , ,c=2log52,则f(a),f(b),f(c)的大小关系为( )
A.f(c)<f(b)<f(a)
B.f(c)<f(a)<f(b)
C.f(c)>f(b)>f(a)
D.f(c)>f(a)>f(b)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零平面向量 , ,则“| |=| |+| |”是“存在非零实数λ,使 =λ ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )
A.若 的观测值为 ,在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌.
B.由独立性检验可知,在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有 的可能患有肺癌.
C.若从统计量中求出在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系,是指有 的可能性使得判断出现错误.
D.以上三种说法都不正确.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= 的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是( )
A.a>1
B.a≤﹣
C.a≥1或a<﹣
D.a>1或a≤﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com