精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)若g(x)=f(x)-a为奇函数,求a的值;
(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.

解:(Ⅰ)∵
∴g(x)=f(x)-a=,…
∵g(x)是奇函数,
∴g(-x)=-g(x),即
解之得a=1.…
(Ⅱ)设0<x1<x2,则
=
∵0<x1<x2
∴x1-x2<0,x1x2>0,从而
即f(x1)<f(x2).
所以函数f(x)在(0,+∞)内是单调增函数.
分析:(I)根据f(x)表达式,得g(x)=,再根据奇函数的定义采用比较系数法即可求出实数a的值.
(II)设0<x1<x2,将f(x1)与f(x2)作差、因式分解,得f(x1)<f(x2),结合函数奇偶性的定义得到函数f(x)在(0,+∞)内是单调增函数.
点评:本题给出含有分式的基本初等函数,讨论函数的单调性与奇偶性质.着重考查了函数的奇偶性的定义和用定义法证明单调性等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-lnx
,g(x)=-(x2-3x+1)ex-9(x>0).
(1)求函数f(x)的极值;
(2)是否存在x0∈(0,+∞),使得g(x0)>f(x0)?若存在,试求出x0的值;若不存在,请说明理由;
(3)若?x1,x2∈(0,+∞),都有f(x1)>g(x2)+a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)分别由表给出.若f[g(x)]=1 则x的取值集合为(  )
x 1 2 3
f(x) 1 3 1
x 1 2 3
g(x) 3 2 1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为M,N,且M⊆N,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2
,g(x)=(a+1)x-4.
(Ⅰ)当a=-2时,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a(a>1),使得对任意的x∈[
1
e
, e]
,恒有f(x)<g(x)成立?若存在,求出实数a的取值范围;若不存在,请说明理由.(注:e为自然对数的底数.)

查看答案和解析>>

同步练习册答案