已知关于x的方程:x2-(6+i)x+9+ai=0(a∈R)有实数根b.
(1)求实数a,b的值.
(2)若复数满足|-a-bi|-2|z|=0,求z为何值时,|z|有最小值,并求出|z|的最小值.
(1)a=b=3 (1)
【解析】【思路点拨】(1)把b代入方程,根据复数的实部、虚部等于0解题即可.
(2)设z=s+ti(s,t∈R),根据所给条件可得s,t间的关系,进而得到复数z对应的轨迹,根据轨迹解决|z|的最值问题.
【解析】
(1)∵b是方程x2-(6+i)x+9+ai=0(a∈R)的实根,
∴(b2-6b+9)+(a-b)i=0,
∴解得a=b=3.
(2)设z=s+ti(s,t∈R),其对应点为Z(s,t),
由|-3-3i|=2|z|,
得(s-3)2+(t+3)2=4(s2+t2),
即(s+1)2+(t-1)2=8,
∴Z点的轨迹是以O1(-1,1)为圆心,2为半径的圆,如图所示,
当Z点在OO1的连线上时,|z|有最大值或最小值.
∵|OO1|=,半径r=2,
∴当z=1-i时,|z|有最小值且|z|min=.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十四第三章第八节练习卷(解析版) 题型:选择题
某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为( )
(A)15米 (B)5米
(C)10米 (D)12米
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十五第四章第一节练习卷(解析版) 题型:填空题
已知△ABC中,=a,=b,对于平面ABC上任意一点O,动点P满足=+λa+λb,则动点P的轨迹所过的定点为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十二第三章第六节练习卷(解析版) 题型:解答题
设函数f(x)=2cos2x+2sinxcosx-1(x∈R).
(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.
(2)若x∈[0,],求函数f(x)的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十二第三章第六节练习卷(解析版) 题型:选择题
已知函数f(x)=-asincos(π-)的最大值为2,则常数a的值为( )
(A) (B)-
(C)± (D)±
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十九第四章第五节练习卷(解析版) 题型:选择题
若sin2θ-1+i(cosθ+1)是纯虚数,则θ的值为( )
(A)2kπ-,k∈Z(B)2kπ+,k∈Z
(C)2kπ±,k∈Z(D)π+,k∈Z
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十九第四章第五节练习卷(解析版) 题型:选择题
已知复数z=1+i,则等于( )
(A)2i(B)-2i(C)2(D)-2
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十七第四章第三节练习卷(解析版) 题型:解答题
在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤).
(1)若⊥a,且||=||(O为坐标原点),求向量.
(2)若向量与向量a共线,当k>4,且tsinθ取最大值4时,求·.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十第五章第一节练习卷(解析版) 题型:选择题
已知数列{an}的前n项和Sn=n2-9n,第k项满足5<ak<8,则k等于( )
(A)9(B)8(C)7(D)6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com