精英家教网 > 高中数学 > 题目详情

某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为(  )

(A)15(B)5

(C)10(D)12

 

C

【解析】【思路点拨】作出图形确定三角形,找到要用的角度和边长,利用余弦定理求得.

:如图,设塔高为h,RtAOC,ACO=45°,OC=OA=h.

RtAOD,ADO=30°,OD=h,

在△OCD,OCD=120°,CD=10,

由余弦定理得:

OD2=OC2+CD2-2OC·CD·cosOCD,

(h)2=h2+102-2h×10×cos 120°,

h2-5h-50=0,解得h=10h=-5(舍去).

【方法技巧】测量高度的常见思路

解决高度的问题主要是根据条件确定出所利用的三角形,准确地理解仰角和俯角的概念并和三角形中的角度相对应;分清已知和待求的关系,正确地选择定理和公式,特别注意高度垂直地面构成的直角三角形.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:选择题

已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点Py轴的距离为d1,P到直线l的距离为d2,d1+d2的最小值为(  )

(A)+2 (B)+1 (C)-2 (D)-1

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:选择题

若点A(3,5)关于直线l:y=kx的对称点在x轴上,k(  )

(A) (B)±

(C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十第三章第四节练习卷(解析版) 题型:选择题

如图,为了研究钟表与三角函数的关系,建立了如图所示的坐标系,设秒针针尖位置P(x,y).若初始位置为P0(,),当秒针从P0(:此时t=0)正常开始走时,P的纵坐标y与时间t的函数关系为(  )

(A)y=sin(t+) (B)y=sin(-t-)

(C)y=sin(-t+) (D)y=sin(-t-)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十四第三章第八节练习卷(解析版) 题型:解答题

在海岸A,发现北偏东45°方向、距离A(-1)海里的B处有一艘走私船;A处北偏西75°方向、距离A2海里的C处的缉私船奉命以10海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多少时间?

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十四第三章第八节练习卷(解析版) 题型:选择题

某水库大坝的外斜坡的坡度为,则坡角α的正弦值为(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十六第四章第二节练习卷(解析版) 题型:填空题

已知向量a=(-2,3),ba,向量b的起点为A(1,2),终点B在坐标轴上,则点B的坐标为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十八第四章第四节练习卷(解析版) 题型:选择题

已知圆O(O为坐标原点)的半径为1,PA,PB为该圆的两条切线,A,B为两切点,那么·的最小值为(  )

(A)-4+(B)-3+

(C)-4+2(D)-3+2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十九第四章第五节练习卷(解析版) 题型:解答题

已知关于x的方程:x2-(6+i)x+9+ai=0(aR)有实数根b.

(1)求实数a,b的值.

(2)若复数满足|-a-bi|-2|z|=0,z为何值时,|z|有最小值,并求出|z|的最小值.

 

查看答案和解析>>

同步练习册答案