【题目】在平面直角坐标系xOy中,直线y=1与函数y=3sin
x(0≤x≤10)的图象所有交点的横坐标之和为 .
【答案】30
【解析】解:∵y=3sin
x的周期T=
=4,
∴当0≤x≤10时,其图象如下:![]()
由图知,直线y=1与正弦曲线y=3sin
x(0≤x≤10)相交于A、B、C、D、E、F6个点,其横坐标如图所示,
则x1+x2=2,x3+x4=10,x5+x6=18,
∴所有交点的横坐标之和为2+10+18=30.
所以答案是:30.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
四边形
为直角梯形,
四边形
为等腰梯形,
且
(Ⅰ)若梯形
内有一点
,使得
平面
,求点
的轨迹;
(Ⅱ)求平面
与平面
所成的锐二面角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为椭圆
的左焦点,直线
被椭圆
截得弦长为
.
(1)求椭圆
的方程;
(2)圆
与椭圆
交于
两点,
为线段
上任意一点,直线
交椭圆
于
两点
为圆
的直径,且直线
的斜率大于
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中新网2016年12月19日电根据预报,今天开始雾霾范围将进一步扩大,
日夜间至
日,雾霾严重时段部分地区
浓度峰值会超过
微克/立方米. 而此轮雾霾最严重的时段,将有包括京津冀、山西、陕西、河南等
个省市在内的地区被雾霾笼罩.
是指大气中直径小于或等于
微米的顆粒物,也称为可人肺颗粒物.
日均值在
微克/立方米以下空气质量为一级;在
微克/立方米
微克/立方米之间空气质量为二级;在
微克/立方米以上空气质量为超标.某地区在2016年12月19日至28日每天的
监测数据的茎叶图如下:
![]()
(1)求出这些数据的中位数与极差;
(2)从所给的空气质量不超标的
天的数据中任意抽取
天的数据,求这
天中恰好有
天空气质量为一级,另一天空气质量为二级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
①若
<
<0,则
+
>2;
②若a>b,则am2>bm2;
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2﹣ax+1≥0,则0<a≤4.
其中是真命题的有( )
A.①②
B.②③
C.①③
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某条公共汽车线路收支差额
与乘客量
的函数关系如图所示(收支差额
车票收入
支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则
![]()
A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)
B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)
C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500)。
![]()
(1)求居民收入在[2000,3 000)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 000,3 000)的这段应抽取多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com