精英家教网 > 高中数学 > 题目详情

设x1、x2是函数数学公式(a>0)的两个极值点.
(1)若x1<2<x2<4,求证:f′(-2)>3;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.

(1)证明:由已知得:f'(x)=ax2+(b-1)x+1,x1,x2是方程f'(x)=0的两根.
由于
由于f'(-2)=4a-2b+3,
①×(-3)+②得:4a-2b>0,
∴f'(-2)=4a-2b+3>3.
(2)解:由韦达定理得,

①当
这时,由|x2-x1|=2,得x2=x1+2,
为增函数(也可用求导法来证),

②当也为增函数,
故这时,
综上,b的取值范围是
分析:(1)由已知得,x1,x2是方程f'(x)=0的两根,再根据x1<2<x2<4,可得,为关于a,b的不等式组,利用不等式的性质可求证f′(-2)>3;
(2)利用韦达定理先把b用x1、x2表示出来,分0<x1<2及-2<x1<0两种情况进行讨论,把b表示为关于x1的函数,借助函数的单调性可求出b的范围.
点评:本题考查函数在某点取得极值的条件及二次方程根的分布问题等知识,解决第(2)题的关键是通过讨论把b表示成关于x1的函数,利用函数性质处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=
a
3
x3
+
b
2
x2
-a2x(a>0,b∈R)的两个极值点,且丨x1-x2丨=2.
(Ⅰ)用a的代数式表示b2
(Ⅱ)求证:0<a≤1;
(Ⅲ)求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax2-bx(a,b∈R),g(x)=
2x-2
x+1
-lnx
(I)当a=-1时,f(x)与g(x)在定义域上的单调性相反,求b的取值范围;
(II)设x1,x2是函数y=f(x)的两个零点,且x1<x2求证
2
x1+x2
<a(x1+x2)+b.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a>0)且f(1)=-
a2

(1)求证:函数f(x)有两个零点;
(2)设x1,x2是函数的两个零点,求|x1-x2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=2008x定义域内的两个变量,且x1<x2,若a=
1
2
(x1+x2),那么,下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案