精英家教网 > 高中数学 > 题目详情
(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )
分析:△ABC中设AB=c,BC=a,AC=b,由sinB=cosA•sinC结合三角形的内角和及和角的正弦公式化简可求 cosC的值,再由
AB
AC
=9,S△ABC=6可得bccosA=9,
1
2
bcsinA=6可求得c,b,a,建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数λ使得
CP
CA
+(1-λ)
CB
=(3λ,4-4λ)(0≤λ≤1),设
CA
|
CA
|
=
e1
CB
|
CB
|
=
e2
则|
e1
|=|
e2
|=1,
e1
=(1,0),
e2
=(0,1),由
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
推出x与y的关系式,利用基本不等式求解最大值.
解答:解:△ABC中设AB=c,BC=a,AC=b
∵sinB=cosA•sinC,sin(A+C)=sinCcosnA,即sinAcosC+sinCcosA=sinCcosA
∴sinAcosC=0
∵sinA≠0∴cosC=0 C=90°
AB
AC
=9,S△ABC=6
∴bccosA=9,
1
2
bcsinA=6
∴tanA=
4
3
,根据直角三角形可得sinA=
4
5
,cosA=
3
5
,bc=15
∴c=5,b=3,a=4
以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)
P为线段AB上的一点,则存在实数λ使得
CP
CA
+(1-λ)
CB
=(3λ,4-4λ)(0≤λ≤1)
CA
|
CA
|
=
e1
CB
|
CB
|
=
e2
则|
e1
|=|
e2
|=1,
e1
=(1,0),
e2
=(0,1),
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
=(x,0)+(0,y)=(x,y)可得x=3λ,y=4-4λ则4x+3y=12,
12=4x+3y≥2
12xy
,xy≤3
故所求的xy最大值为:3.
故选C.
点评:本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解把已知所给的
CA
|
CA
|
是一个单位向量,从而可用x,y表示
CP
,建立x,y与λ的关系,解决本题的第二个关键点在于由x=3λ,y=4-4λ发现4x+3y=12为定值,从而考虑利用基本不等式求解最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•婺城区模拟)设m,n是不同的直线,α,β是不同的平面,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)已知点P是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1⊥PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)若
1-i1+i
=a+bi(a,b∈R),则a-b的值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)已知数列{an}是公差为1的等差数列,Sn是其前n项和,若S8是数列{Sn}中的唯一最小项,则{an}数列的首项a1的取值范围是
(-8,-7)
(-8,-7)

查看答案和解析>>

同步练习册答案