精英家教网 > 高中数学 > 题目详情
设奇函数f(x)在(0,+∞)上为单调递减函数,且f(2)=0,则不等式
f(-x)-f(x)
x
≤0
的解集为(  )
A、(-∞,-2]∪(0,2]
B、[-2,0]∪[2,+∞)
C、(-∞,-2]∪[2,+∞)
D、[-2,0)∪(0,2]
分析:由题意画出函数f(x)的单调性示意图,不等式即
f(x)
x
≥0,可得①
x>0
f(x)≥0
,或②
x<0
f(x)≤0
.分别求得解①和②的解集,再取并集,即得所求.
解答:精英家教网解:由题意可得,函数f(x)在(-∞,0)上也为
单调递减函数,且f(-2)=0.
画出函数f(x)的单调性示意图:
不等式即
-f(x)-f(x)
x
≤0
,即
f(x)
x
≥0,
∴①
x>0
f(x)≥0
,或②
x<0
f(x)≤0

解①可得x≥2,解②可得 x≤-2.
故不等式的解集为{x|x≥2,或 x≤-2},
故选:C.
点评:本题主要考查函数的单调性和奇偶性的应用,体现了数形结合以及转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[(f(x)-f(-x)]<0的解集为
(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )
A、-2≤t≤2
B、-
1
2
≤t≤
1
2
C、t≥2或t≤-2或t=0
D、t≥
1
2
或t≤-
1
2
或t=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(-∞,0)上为增函数,且f(-1)=0,则不等式
f(-x)-f(x)
x
>0
的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式
f(x)-f(-x)
x
<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式(x-1)f(x-1)<0的解集为(  )

查看答案和解析>>

同步练习册答案