分析 先求导函数,研究出函数在区间[-3,3]上的单调性,从而确定出函数最值的位置,求出函数的最值,即可求M+m.
解答 解:∵函数f(x)=x3-12x+8
∴f′(x)=3x2-12
令f′(x)>0,解得x>2或x<-2;令f′(x)<0,解得-2<x<2
故函数在[-2,2]上是减函数,在[-3,-2],[2,3]上是增函数,
所以函数在x=2时取到最小值f(2)=8-24+8=-8,在x=-2时取到最大值f(-2)=-8+24+8=24
即M=24,m=-8
∴M+m=16.
故答案为:16.
点评 本题重点考查导数知识的运用,考查函数的最值、单调性,解答本题关键是研究出函数的单调性,利用函数的单调性确定出函数的最值.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45 | B. | 50 | C. | 55 | D. | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{3+\sqrt{2}}}{2}$ | C. | 4 | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com