精英家教网 > 高中数学 > 题目详情
16.已知线段AB是半径为2的球O的直径,C,D两点在球O的球面上,CD=2,AB⊥CD,45°≤∠AOC≤135°,则四面体ABCD的体积的取值范围是$[\frac{4}{3},\frac{4\sqrt{3}}{3}]$.

分析 判断棱锥体积取得最值的位置,求出四面体ABCD的体积的最值,即可得到范围.

解答 解:线段AB是半径为2的球O的直径,C,D两点在球O的球面上,CD=2,AB⊥CD,45°≤∠AOC≤135°,
则四面体ABCD的体积的最小值是∠AOC=45°或135°时,经过CD与AB垂直的截面面积最小,如图(1)中三角形ECD,F为CD的中点,EC=OCsin45°=$\sqrt{2}$,OF=$\sqrt{3}$,EF=$\sqrt{({\sqrt{2})}^{2}-{1}^{2}}$
S△ECD=$\frac{1}{2}$CD•EF=$\frac{1}{2}×2×\sqrt{{(\sqrt{2})}^{2}-{1}^{2}}$=1.
棱锥体积的最小值为:$\frac{1}{3}×\frac{1}{2}×2×\sqrt{(\sqrt{2})^{2}-{1}^{2}}$×4=$\frac{4}{3}$.
当∠AOC=90°时,经过CD与AB垂直的截面面积最大,如图(2),截面三角形OCD是正三角形,边长为2.
棱锥体积的最大值为:$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}×4$=$\frac{4\sqrt{3}}{3}$.
四面体ABCD的体积的取值范围是:$[\frac{4}{3},\frac{4\sqrt{3}}{3}]$.
故答案为:$[\frac{4}{3},\frac{4\sqrt{3}}{3}]$.

点评 本题考查球的内接体,几何体的体积的最值的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知平面区域M={(x,y)|x2+y2≤4},N={(x,y)|$\left\{\begin{array}{l}{y≥mx+2m}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$},在区域M上随机取一点A,A落在区域N内的概率为P(N),若P(N)∈[$\frac{1}{2}$,$\frac{3π+2}{4π}$],则实数m的取值范围是(  )
A.[0,1]B.[-$\frac{\sqrt{3}}{3}$,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.确定下列每组两个集合的包含关系或相等关系:
(1)A={n|n为12的正约数}与B={1,3,2,4,6,12};
(2)C={m|m=2k,k∈N*}与D={m|m为4的正整数倍数}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ax2-x+2a-1在[1,2]上的最小值为t,若t≤1恒成立,则实数a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M+m=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X与Y,且X,Y的分布列为
X123
Pa0.10.6
Y123
P0.3b0.3
(1)求a,b的值;
(2)计算X,Y的期望与方差,并以此分析甲、乙技术状况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的表面积为(  )
A.12+2$\sqrt{3}$+3πB.12+3πC.2$\sqrt{3}$+$\frac{{\sqrt{3}π}}{3}$D.2$\sqrt{3}$+$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某四棱锥的三视图如图所示,则该四棱锥的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3成立,则a0+a1+a2+a3=27.

查看答案和解析>>

同步练习册答案