精英家教网 > 高中数学 > 题目详情

已知函数.

(Ⅰ)当a=3时,求函数上的最大值和最小值;

(Ⅱ)求函数的定义域,并求函数的值域。(用a表示)

 

【答案】

(Ⅰ);(Ⅱ)的定义域为的值域为

【解析】

试题分析:(Ⅰ)当时,求函数上的最大值和最小值,令,变形得到该函数的单调性,求出其值域,再由为增函数,从而求得函数上的最大值和最小值;(Ⅱ)求函数的定义域,由对数函数的真数大于0求出函数的定义域,求函数的值域,函数的定义域,即的定义域,把的解析式代入后整理,化为关于的二次函数,对分类讨论,由二次函数的单调性求最值,从而得函数的值域.

试题解析:(Ⅰ)令,显然上单调递减,故

,即当时,,(在时取得)

,(在时取得)

(II)由的定义域为,由题易得:

因为,故的开口向下,且对称轴,于是:

当时,的值域为(

当时,的值域为(

考点:复合函数的单调性;函数的值域.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a+log2x(当x≥2时)
x2-4
x-2
(当x<2时)
在点x=2处
连续,则常数a的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x•2x,当f'(x)=0时,x=
-
1
ln2
-
1
ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2,当x=1时,有极大值3
(1)求函数的解析式
(2)写出它的单调区间
(3)求此函数在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=cosx+x,当x∈[-
π
2
π
2
]
时,该函数的值域是
[-
π
2
π
2
]
[-
π
2
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+log2x(当x≥2时)
x2-4
x-2
(当x<2时)
在点x=2处
连续,则常数a的值是
3
3

查看答案和解析>>

同步练习册答案