【题目】设函数
.
(1)若曲线
与
在它们的交点
处有相同的切线,求实数a,b的值;
(2)当
时,若函数
在区间
内恰有两个零点,求实数的取值范围.
【答案】(1)
.(2)![]()
【解析】
(1) 由曲线
与
在它们的交点
处有相同的切线,可得
,且
,可得a,b的值.
(2) 当
时,可得
,可得
,令
,解得
,所以函数
的单调递增区间为
,单调递减区间为
,故
在区间
上单调递增,在区间
上单调递减,由
在区间
内恰有两个零点,列出关于a的不等式,可得a的取值范围.
解:(1)因为![]()
所以
,![]()
因为曲线
与
在它们的交点
处有相同的切线,
所以
,且
,即
,且
,
解得
.
(2)当
时,
,
所以![]()
令
,解得
.
当x变化时,
,
的变化情况如下表:
x |
|
|
| a |
|
| + | 0 | - | 0 | + |
|
| 极大值 |
| 极小值 |
|
所以函数
的单调递增区间为
,单调递减区间为
,
故
在区间
上单调递增,在区间
上单调递减.
又函数
在区间
内恰有两个零点,所以有
,即![]()
解得
,所以实数a的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标.
分值权重表如下:
总分 | 技术 | 商务 | 报价 |
100% | 50% | 10% | 40% |
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.
在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:
公司 | 技术 | 商务 | 报价 |
甲 | 80分 | 90分 | A甲分 |
乙 | 70分 | 100分 | A乙分 |
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是( )
A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点在平面直角坐标系的原点
处,极轴与
轴的非负半轴重合,且长度单位相同,直线
的极坐标方程为
,曲线
(
为参数).其中
.
(1)试写出直线
的直角坐标方程及曲线
的普通方程;
(2)若点
为曲线
上的动点,求点
到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由菱形
,平行四边形
和矩形
组成的一个平面图形,其中
,
,
,
,将其沿
,
折起使得
与
重合,如图2.
![]()
(1)证明:图2中的平面
平面
;
(2)求图2中点
到平面
的距离;
(3)求图2中二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列
中,
,
.令
,数列
的前
项和为
.
(1)求数列
的通项公式;
(2)求数列
的前
项和
;
(3)是否存在正整数
,(![]()
),使得
,
,
成等比数列?若存在,求出所有的
,
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了
名机动车司机,得到以下统计:在
名男性司机中,开车时使用手机的有
人,开车时不使用手机的有
人;在
名女性司机中,开车时使用手机的有
人,开车时不使用手机的有
人.
(1)完成下面的
列联表,并判断是否有
的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为
,若每次抽检的结果都相互独立,求
的分布列和数学期望
.
参考公式与数据:
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式
span>,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】河北省高考改革后高中学生实施选课走班制,若某校学生选择物理学科的人数为800人,高二期中测试后,由学生的物理成绩,调研选课走班制学生的学习情况及效果,为此决定从这800人中抽取
人,其频率分布情况如下:
分数 | 频数 | 频率 |
| 8 | 0.08 |
| 18 | 0.18 |
| 20 | 0.2 |
|
| 0.24 |
| 15 |
|
| 10 | 0.10 |
| 5 | 0.05 |
合计 |
| 1 |
(1)计算表格中
,
,
的值;
(2)为了了解成绩在
,
分数段学生的情况,先决定利用分层抽样的方法从这两个分数段中抽取6人,再从这6人中随机抽取2人进行面谈,求2人来自不同分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
经过点
,A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若
,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com