精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C经过点AB是抛物线C上异于点O的不同的两点,其中O为原点.

1)求抛物线C的方程,并求其焦点坐标和准线方程;

2)若,求面积的最小值.

【答案】(1)抛物线C的方程为.焦点坐标为,准线方程为(2)面积的最小值为4

【解析】

1)根据题意,将P的坐标代入抛物线的方程,可得p的值,即可得抛物线的标准方程,分析即可得答案;

2)直线AB的方程为,与抛物线的方程联立,可得,设,结合,结合根与系数的关系分析可得,进而可得面积的表达式,分析可得答案.

解:(1)由抛物线C经过点,解得

则抛物线C的方程为

抛物线C的焦点坐标为,准线方程为

2)由题知,直线AB不与y轴垂直,设直线AB

消去x,得

,则

因为,所以,即

解得(舍去)或

所以解得

所以直线AB

所以直线AB过定点

当且仅当时,等号成立.

所以面积的最小值为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若曲线在它们的交点处有相同的切线,求实数a,b的值;

(2)当时,若函数在区间内恰有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;

(2)令,由散点图判断哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)

(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ1-cos2θ=8cosθ,直线ρcosθ=1与曲线C相交于MN两点,直线l过定点P20)且倾斜角为αl交曲线CAB两点.

1)把曲线C化成直角坐标方程,并求|MN|的值;

2)若|PA||MN||PB|成等比数列,求直线l的倾斜角α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左右顶点分别是,长轴长为是以原点为圆心,为半径的圆的任一条直径,四边形的面积最大值为.

(1)求椭圆的方程;

(2)不经过原点的直线与椭圆交于两点,

①若直线的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;

②若直线的斜率是直线斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数,若过的动直线与曲线相交于两点

(1)说明曲线的形状,并写出其标准方程;

(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DC⊥平面ABCPQ分别为AEAB的中点.

(1)证明:平面.

(2)求异面直线所成角的余弦值;

(3)求平面与平面所成锐二面角的大小。

查看答案和解析>>

同步练习册答案