【题目】已知椭圆
:
的左右焦点分别为
、
,左右顶点分别是
、
,长轴长为
,
是以原点为圆心,
为半径的圆的任一条直径,四边形
的面积最大值为
.
(1)求椭圆
的方程;
(2)不经过原点的直线
:
与椭圆交于
、
两点,
①若直线
与
的斜率分别为
,
,且
,求证:直线
过定点,并求出该定点的坐标;
②若直线
的斜率是直线
、
斜率的等比中项,求
面积的取值范围.
【答案】(1)
;(2)![]()
【解析】
(1)由题可得
,再由四边形
的面积最大值为
列方程即可求得
,问题得解。
(2)①设
,
,联立直线与椭圆方程可得:
,即可表示出
,
,再整理
,可得:
,问题得解。
②由直线
的斜率是直线
、
斜率的等比中项即可求得
,再由弦长公式求得
,求出点
到直线
的距离
,即可表示
,再利用基本不等式即可得解。
(1)由题可得:
,即:
,
当
与
轴重合时,四边形
的面积最大值
由已知可得:
,解得:![]()
所以椭圆方程为:
.
(2)①证明:设
,
,
将
代入椭圆方程得:
,
,
∴
,
,
∵
,
∴
,
解得:
,
∴直线
的方程为
,即
,
故直线
恒过定点
;
②由直线
的斜率是直线
,
斜率的等比中项,
即有
,即
,
∴
,整理得:
,解得
,
代入
有
,
,
点
到直线
的距离
,
∴
,
(当且仅当
时,等号成立)
所以
面积的取值范围是:
.
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了
名机动车司机,得到以下统计:在
名男性司机中,开车时使用手机的有
人,开车时不使用手机的有
人;在
名女性司机中,开车时使用手机的有
人,开车时不使用手机的有
人.
(1)完成下面的
列联表,并判断是否有
的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为
,若每次抽检的结果都相互独立,求
的分布列和数学期望
.
参考公式与数据:
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式
span>,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
经过点
,A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若
,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线
由曲线
和曲线
组成,其中点
为曲线
所在圆锥曲线的焦点,点
为曲线
所在圆锥曲线的焦点.
![]()
(1)若
,求曲线
的方程;
(2)如图,作直线
平行于曲线
的渐近线,交曲线
于点
,求证:弦
的中点
必在曲线
的另一条渐近线上;
(3)对于(1)中的曲线
,若直线
过点
交曲线
于点
,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点
,左、右顶点分别为
、
.直线
且交椭圆于
、
两点,点E 关于
轴的对称点为点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.
![]()
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=
,侧棱PA与底面ABCDE所成角为45°,S△PBE=
,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com