【题目】已知椭圆:的左右焦点分别为、,左右顶点分别是、,长轴长为,是以原点为圆心,为半径的圆的任一条直径,四边形的面积最大值为.
(1)求椭圆的方程;
(2)不经过原点的直线:与椭圆交于、两点,
①若直线与的斜率分别为,,且,求证:直线过定点,并求出该定点的坐标;
②若直线的斜率是直线、斜率的等比中项,求面积的取值范围.
【答案】(1);(2)
【解析】
(1)由题可得,再由四边形的面积最大值为列方程即可求得,问题得解。
(2)①设,,联立直线与椭圆方程可得:,即可表示出,,再整理,可得:,问题得解。
②由直线的斜率是直线、斜率的等比中项即可求得,再由弦长公式求得,求出点到直线的距离,即可表示,再利用基本不等式即可得解。
(1)由题可得:,即:,
当与轴重合时,四边形的面积最大值
由已知可得:,解得:
所以椭圆方程为:.
(2)①证明:设,,
将代入椭圆方程得:,
,
∴,,
∵,
∴,
解得:,
∴直线的方程为,即,
故直线恒过定点;
②由直线的斜率是直线,斜率的等比中项,
即有,即,
∴,整理得:,解得,
代入有,
,
点到直线的距离,
∴ ,
(当且仅当时,等号成立)
所以面积的取值范围是:.
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.
(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.
参考公式与数据:
参考数据:
参考公式
span>,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:经过点,A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点,左、右顶点分别为、.直线且交椭圆于、两点,点E 关于轴的对称点为点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=,侧棱PA与底面ABCDE所成角为45°,S△PBE=,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com