精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,短轴长为2;

(1)求椭圆的标准方程;

(2)设椭圆上顶点,左、右顶点分别为.直线且交椭圆于两点,点E 关于轴的对称点为点,求证:

【答案】(1);(2)见解析

【解析】

(1)由已知可得关于abc的方程组,求解可得abc的值,则椭圆方程可求;

(2)求出AB的斜率,得到直线l的斜率,设直线l的方程为yx+mEx1y1),Fx2y2),则G(﹣x1y1),联立直线方程与椭圆方程,然后利用根与系数的关系结合斜率公式证明CFAG

(1)由题意可得,解得a2=4,b2=1,c2=3,

∴椭圆的标准方程为y2=1,

(2)由(1)可得A(0,1),B(﹣2,0),C(2,0),

∵直线lAB,∴klkAB

不妨设直线l的方程为yx+m

,则

,得:,得:

因为(

=

所以,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左右顶点分别是,长轴长为是以原点为圆心,为半径的圆的任一条直径,四边形的面积最大值为.

(1)求椭圆的方程;

(2)不经过原点的直线与椭圆交于两点,

①若直线的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;

②若直线的斜率是直线斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数,若过的动直线与曲线相交于两点

(1)说明曲线的形状,并写出其标准方程;

(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面上的一点, 平面

(1)求证:的中点;

(2)求证:

(3)设二面角为60°,,求长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是(  )

A. 这15天日平均温度的极差为

B. 连续三天日平均温度的方差最大的是7日,8日,9日三天

C. 由折线图能预测16日温度要低于

D. 由折线图能预测本月温度小于的天数少于温度大于的天数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DC⊥平面ABCPQ分别为AEAB的中点.

(1)证明:平面.

(2)求异面直线所成角的余弦值;

(3)求平面与平面所成锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知抛物线的焦点Fy轴上,其准线与双曲线的下准线重合.

1)求抛物线的标准方程;

2)设A()(0)是抛物线上一点,且AFB是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点Bl的平行线l′,直线l′与抛物线交于点MN,求△AMN的面积.

查看答案和解析>>

同步练习册答案