【题目】如图,在平面直角坐标系xOy中,已知抛物线的焦点F在y轴上,其准线与双曲线的下准线重合.
(1)求抛物线的标准方程;
(2)设A(,)(>0)是抛物线上一点,且AF=,B是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点B作l的平行线l′,直线l′与抛物线交于点M,N,求△AMN的面积.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点,左、右顶点分别为、.直线且交椭圆于、两点,点E 关于轴的对称点为点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=,侧棱PA与底面ABCDE所成角为45°,S△PBE=,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.
(1)求的值;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点.离心率.
(1)求椭圆C的标准方程;
(2)若M,N分别是椭圆长轴的左、右端点,动点D满足,连接MD交椭圆于点Q.问:x轴上是否存在异于点M的定点G,使得以QD为直径的圆恒过直线QN,GD的交点?若存在,求出点G的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①离心率,②椭圆过点,③面积的最大值为,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.
设椭圆的左、右焦点分别为,过且斜率为的直线交椭圆于两点,已知椭圆的短轴长为,________.
(1)求椭圆的方程;
(2)若线段的中垂线与轴交于点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点坐标为,,过垂直于长轴的直线交椭圆于、两点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)过的直线与椭圆交于不同的两点、,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.
(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;
(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为,求的分布列;
(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com