精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知抛物线的焦点Fy轴上,其准线与双曲线的下准线重合.

1)求抛物线的标准方程;

2)设A()(0)是抛物线上一点,且AFB是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点Bl的平行线l′,直线l′与抛物线交于点MN,求△AMN的面积.

【答案】1;(2

【解析】

1)根据双曲线的下准线求得抛物线的准线方程,由此求得抛物线的标准方程.

2)根据抛物线的定义求得点的坐标,由此求得切线的方程,求得点的坐标,进而求得直线的方程,由此求得弦长,利用点到直线距离公式求得到直线的距离,进而求得三角形的面积.

1)双曲线的下准线方程为.设抛物线的标准方程为,由题意,,所以,所以抛物线的标准方程为.

2)由,得,所以.,得,所以抛物线在点处的切线的斜率为,所以直线的方程为,即.因为抛物线的准线与轴的交点的坐标为,所以直线的平行线的方程为,由消去.的横坐标分别为,则,所以.到直线的距离为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为2;

(1)求椭圆的标准方程;

(2)设椭圆上顶点,左、右顶点分别为.直线且交椭圆于两点,点E 关于轴的对称点为点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.

(Ⅰ)求证:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,侧棱PA与底面ABCDE所成角为45°,S△PBE=,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知棱两两垂直,长度分别为1,2,2.若),且向量夹角的余弦值为.

(1)求的值;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点.离心率.

1)求椭圆C的标准方程;

2)若MN分别是椭圆长轴的左、右端点,动点D满足,连接MD交椭圆于点Q.问:x轴上是否存在异于点M的定点G,使得以QD为直径的圆恒过直线QNGD的交点?若存在,求出点G的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是( )

A.

B.平面

C.与平面所成角是

D.面积与的面积相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①离心率,②椭圆过点,③面积的最大值为,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.

设椭圆的左、右焦点分别为,过且斜率为的直线交椭圆于两点,已知椭圆的短轴长为,________.

1)求椭圆的方程;

2)若线段的中垂线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点坐标为,过垂直于长轴的直线交椭圆于两点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.

(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;

(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为,求的分布列;

(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.

查看答案和解析>>

同步练习册答案