精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦点坐标为,过垂直于长轴的直线交椭圆于两点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

【答案】1;(2)存在,内切圆面积最大值是,直线方程为.

【解析】

(1)设椭圆方程为1(a>b>0)

由焦点坐标可得c1.|PQ|3,可得3.

a2b21,得a2b.故椭圆方程为1.

(2)M(x1y1)N(x2y2),不妨令y1>0y2<0

F1MN的内切圆的半径R

F1MN的周长为4a8SF1MN(|MN||F1M||F1N|)R4R

因此要使F1MN内切圆的面积最大,则R最大,此时SF1MN也最大.

SF1MNF1F2||y1y2|y1y2

由题知,直线l的斜率不为零,可设直线l的方程为xmy1

(3m24)y26my90

y1y2

SF1MNy1y2,令t,则t≥1

SF1MN.f(t)3t,则f′(t)3

t≥1时,f′(t)>0,所以f(t)[1,+∞)上单调递增,

f(t)≥f(1)4SF1MN3

t1m0时,SF1MN3,又SF1MN4RRmax

这时所求内切圆面积的最大值为π.

F1MN内切圆面积的最大值为π,且此时直线l的方程为x1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),( ),圆C的参数方程 (θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+ 在区间[1,4]上存在次不动点,则实数a的取值范围是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如图所示的程序框图输出的S是126,则n条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+ |﹣|x﹣ |;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:

性质

定义域

值域

单调性

奇偶性

零点

f(x)


(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinxcos(x﹣ )+cos2x﹣
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)= ,x0∈[ ],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0a≠1,设命题p:函数y=loga(x-1)(1,+∞)上单调递减,命题q:曲线y=x2+(a-2)x+4x轴交于不同的两点.若pq为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+1|+|x﹣4|﹣a.
(1)当a=1时,求函数f(x)的最小值;
(2)若f(x)≥ +1对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面,的中点,过的平面与交于点

(1)求证:点的中点;

(2)四边形是什么平面图形?说明理由,并求其面积.

查看答案和解析>>

同步练习册答案