精英家教网 > 高中数学 > 题目详情

【题目】如图,DC⊥平面ABCPQ分别为AEAB的中点.

(1)证明:平面.

(2)求异面直线所成角的余弦值;

(3)求平面与平面所成锐二面角的大小。

【答案】(1)见证明;(2) (3)

【解析】

1)根据三角形中位线性质得线线平行,再根据线面平行判定定理得结果,(2)先根据条件建立空间直角坐标系,设各点坐标,利用向量数量积求直线方向向量夹角,即得异面直线所成角,(3)先根据条件建立空间直角坐标系,设各点坐标,利用方程组解得平面法向量,根据向量数量积得法向量夹角,最后根据向量夹角与二面角关系得结果.

解:(1)证明:因为分别是的中点,

所以,

所以,平面

平面

所以,平面.

(2)因为平面

以点为坐标原点,分别以的方向为轴的正方向建立空间直角坐标系.

则得

所以

所以

所以异面直线所成角的余弦值.

(3)由(Ⅱ)可知

设平面的法向量为

.

由已知可得平面的法向量为以

所以.

故所求平面与平面所成锐二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C经过点AB是抛物线C上异于点O的不同的两点,其中O为原点.

1)求抛物线C的方程,并求其焦点坐标和准线方程;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为2;

(1)求椭圆的标准方程;

(2)设椭圆上顶点,左、右顶点分别为.直线且交椭圆于两点,点E 关于轴的对称点为点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)若,解不等式

(Ⅱ)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥中,平面平面,平面平面分别是边上的点,且的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与直线相切,且与圆外切,记动圆M的圆心轨迹为曲线C.

(1)求曲线C的方程;

(2)若直线l与曲线C相交于AB两点,且O为坐标原点),证明直线l经过定点H,并求出H点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.

(Ⅰ)求证:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,侧棱PA与底面ABCDE所成角为45°,S△PBE=,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知棱两两垂直,长度分别为1,2,2.若),且向量夹角的余弦值为.

(1)求的值;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点坐标为,过垂直于长轴的直线交椭圆于两点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案