【题目】如图所示,三棱锥
中,平面
平面
,平面
平面
,
分别是
和
边上的点,且
,
,
,
,
,
,
为
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)见证明;(2) ![]()
【解析】
(1)在
中,根据余弦定理,可得
,所以
,即
是直角三角形,又
为
的中点,所以
为等边三角形,根据线面平行的判定定理即可证明。
(2)以点
为原点,以
,
,
所在直线分别为
轴,
轴,
轴建系,求出
,平面![]()
法向量
的坐标,计算
与法向量
的夹角,可得所求。
(1)平面
平面
,平面
平面
,平面
平面![]()
则
平面
,
又
,则![]()
因为
,
,
,
所以
,
,
在
中,
,
,![]()
由余弦定理可得:![]()
解得:![]()
所以
,所以
是直角三角形,
又
为
的中点,所以![]()
又
,所以
为等边三角形,
所以
,所以
,
又
平面
,
平面
,
所以
平面
.
(2)由(1)可知
,以点
为原点,以
,
,
所在直线分别为
轴,
轴,
轴建立空间直角坐标系,则
,
,
,
.
所以
,
,
.
设
为平面
的法向量,则
,即![]()
设
,则
,
,即平面
的一个法向量为
,
所以
,
![]()
所以直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了
天.得到的统计数据如下表,
为收费标准(单位:元/日),
为入住天数(单位:),以频率作为各自的“入住率”,收费标准
与“入住率”
的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
![]()
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记
为“入住率”超过
的农家乐的个数,求
的概率分布列;
(2)令
,由散点图判断
与
哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(
结果保留一位小数)
(3)若一年按
天计算,试估计收费标准为多少时,年销售额
最大?(年销售额
入住率
收费标准
)
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆
截直线
所得的线段的长度为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,椭圆
:
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
,
两个相异点,证明:
面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DC⊥平面ABC,
,
,
,P、Q分别为AE,AB的中点.
![]()
(1)证明:
平面
.
(2)求异面直线
与
所成角的余弦值;
(3)求平面
与平面
所成锐二面角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N
.
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,当△AMB面积取得最大值时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,设椭圆
的左焦点为
,左准线为
为椭圆
上任意一点,直线
,垂足为
,直线
与
交于点
.
![]()
(1)若
,且
,直线
的方程为
.①求椭圆
的方程;②是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.
(2)设直线
与圆
交于
两点,求证:直线
均与圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量
=λ
+μ
,则λ+μ的最小值为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com