【题目】在平面直角坐标系
中,设椭圆
的左焦点为
,左准线为
为椭圆
上任意一点,直线
,垂足为
,直线
与
交于点
.
![]()
(1)若
,且
,直线
的方程为
.①求椭圆
的方程;②是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.
(2)设直线
与圆
交于
两点,求证:直线
均与圆
相切.
【答案】(1)①
;②不存在;(2)证明见解析.
【解析】
(1)①根据左准线方程求出参数a,从而得出椭圆方程;
②设出
,根据点
在椭圆上且
得出关于
的方程组,根据
解的情况,得出结果;
(2)设点
,
,根据
,求出
,对
进行转化,借助
在圆
上,进而得出结果.
解:(1)①因为直线
的方程为
,
所以![]()
因为
,
所以
,解得
或![]()
因为
,
所以
,
,
椭圆方程为
.
②设
,则
,即
,
当
或
时,均不符合题意;
当
或
时,直线
的斜率为
,
直线
的方程为
,
故直线
的方程为
,
联立方程组
,解得
,
所以
,
因为
,
故
,
即
或![]()
方程
的根为
,
因为
,故无解;
方程
的
,故无解,
综上:不存在点P使
.
(2)设
,![]()
则
,
,
因为
,
所以
,
即
,
由题意得
,所以
,
所以![]()
因为
,![]()
所以![]()
![]()
![]()
![]()
因为
在圆
上,所以
,即
,
故
,
所以
,
所以直线
与圆
相切,
同理可证:
与圆
相切.
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥P-ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.
![]()
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=
,侧棱PA与底面ABCDE所成角为45°,S△PBE=
,点M在侧棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:
组号 | 分组 | 频率 |
第1组 |
|
|
第2组 |
|
|
第3组 |
|
|
第4组 |
|
|
第5组 |
|
|
![]()
求出频率分布表中
处应填写的数据,并完成如图所示的频率分布直方图;
根据直方图估计这次自主招生考试笔试成绩的平均数和中位数
结果都保留两位小数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知棱
,
,
两两垂直,长度分别为1,2,2.若
(
),且向量
与
夹角的余弦值为
.
![]()
(1)求
的值;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
.离心率
.
![]()
(1)求椭圆C的标准方程;
(2)若M,N分别是椭圆长轴的左、右端点,动点D满足
,连接MD交椭圆于点Q.问:x轴上是否存在异于点M的定点G,使得以QD为直径的圆恒过直线QN,GD的交点?若存在,求出点G的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①离心率
,②椭圆
过点
,③
面积的最大值为
,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.
设椭圆
的左、右焦点分别为
,过
且斜率为
的直线
交椭圆于
两点,已知椭圆
的短轴长为
,________.
(1)求椭圆
的方程;
(2)若线段
的中垂线与
轴交于点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
(
)到点
的距离与点
到
轴的距离的差等于1,
(1)求动点
的轨迹
的方程;
(2)过点
的直线
与轨迹
相交于不同于坐标原点
的两点
,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com