【题目】如图,曲线
由曲线
和曲线
组成,其中点
为曲线
所在圆锥曲线的焦点,点
为曲线
所在圆锥曲线的焦点.
![]()
(1)若
,求曲线
的方程;
(2)如图,作直线
平行于曲线
的渐近线,交曲线
于点
,求证:弦
的中点
必在曲线
的另一条渐近线上;
(3)对于(1)中的曲线
,若直线
过点
交曲线
于点
,求
的面积的最大值.
【答案】(1)
和
;(2)证明见解析;(3)
.
【解析】
(1)本题曲线方程的求法实质为待定系数法,即根据条件列出两个方程组,解出对应参数即可(2)本题证明方法为以算代证,即先求出弦
的中点
坐标,再代入双曲线渐近线方程进行验证.先根据条件设出直线方程,与椭圆方程联立方程组,根据韦达定理及中点坐标公式求出弦中点横坐标(或纵坐标),代入直线方程可得弦中点纵坐标(或横坐标),再代入双曲线另一渐近线方程进行验证.
(3)三角形
的面积可转化为等于两个三角形面积之差,即
,所以只需根据直线方程(设直线斜率)与椭圆方程,利用韦达定理表示出
,并根据判别式大于零列出直线斜率取值范围,最后根据基本不等式求最值.
(1)
则曲线
的方程为
和
(2)曲线
的渐近线为
,如图,设直线
则
又由数形结合知
设点
,则
,
![]()
即点
在直线
上
(3)由(1)知,曲线
,点
设直线
的方程为
设
由韦达定理:
令
,则
,当且仅当
即
时等号成立
时,![]()
科目:高中数学 来源: 题型:
【题目】椭圆
的中心在坐标原点,焦点
在
轴上,过坐标原点的直线
交
于
两点,
,
面积的最大值为![]()
(1)求椭圆
的方程;
(2)
是椭圆上与
不重合的一点,证明:直线
的斜率之积为定值;
(3)当点
在第一象限时,
轴,垂足为
,连接
并延长交
于点
,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线
的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,直线
与曲线C交于
两点.
(1)求直线
的普通方程和曲线C的直角坐标方程;
(2)求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了
天.得到的统计数据如下表,
为收费标准(单位:元/日),
为入住天数(单位:),以频率作为各自的“入住率”,收费标准
与“入住率”
的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
![]()
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记
为“入住率”超过
的农家乐的个数,求
的概率分布列;
(2)令
,由散点图判断
与
哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(
结果保留一位小数)
(3)若一年按
天计算,试估计收费标准为多少时,年销售额
最大?(年销售额
入住率
收费标准
)
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下4个命题:
1)三个点可以确定一个平面;
2)平行于同一个平面的两条直线平行;
3)抛物线
对称轴为
轴;
4)同时垂直于一条直线的两条直线一定平行;
正确的命题个数为__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别为
、
,左右顶点分别是
、
,长轴长为
,
是以原点为圆心,
为半径的圆的任一条直径,四边形
的面积最大值为
.
(1)求椭圆
的方程;
(2)不经过原点的直线
:
与椭圆交于
、
两点,
①若直线
与
的斜率分别为
,
,且
,求证:直线
过定点,并求出该定点的坐标;
②若直线
的斜率是直线
、
斜率的等比中项,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的参数方程为
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求椭圆
的极坐标方程和直线
的直角坐标方程;
(2)若点
的极坐标为
,直线
与椭圆
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N
.
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,当△AMB面积取得最大值时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com