精英家教网 > 高中数学 > 题目详情

【题目】以下4个命题:

1)三个点可以确定一个平面;

2)平行于同一个平面的两条直线平行;

3)抛物线对称轴为轴;

4)同时垂直于一条直线的两条直线一定平行;

正确的命题个数为__

【答案】0

【解析】

1)由平面的性质可得:三个不共线的点可以确定一个平面.

2)由空间中的两条直线的位置关系可得:这两条直线可能平行、可能异面、可能相交.

3)由抛物线的性质可得:抛物线对称轴为轴.

4)空间中的两条直线的位置关系可得:这两条直线可能平行、可能异面、可能相交.

1)由平面的性质可得:三个不共线的点可以确定一个平面,所以1)错误.

2)由空间中的两条直线的位置关系可得:平行于同一个平面的两条直线可能平行、可能异面、可能相交,所以2)错误.

3)由抛物线的性质可得:抛物线对称轴为轴,所以3)错误.

4)空间中的两条直线的位置关系可得:在空间中同时垂直于一条直线的两条直线可能平行、可能异面、可能相交,所以4)错误.

故答案为:0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax3lnxa为常数)与函数gx)=xlnxx1处的切线互相平行.

1)求a的值;

2)求函数yfx)在[12]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(1)若,求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;

3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人有楼房一幢,室内总面积为,拟分割成两类房间作为旅游客房,有关的数据如下表:

大房间

小房间

每间的面积

每间装修费

6000

每天每间住人数

5

3

每天每人住宿费

80

100

如果他只能筹款80000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得的住宿总收入最多?每天获得的住宿总收入最多是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”其大意为:“某人从距离关口三百七十八里处出发,第一天走得轻快有力,从第二天起,由于脚痛,每天走的路程为前一天的一半,共走了六天到达关口……” 那么该人第一天走的路程为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.

(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;

(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;

(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?

查看答案和解析>>

同步练习册答案