精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线C交于两点.

1)求直线的普通方程和曲线C的直角坐标方程;

2)求

【答案】(1)直线l的方程为yx+1,曲线C的方程为1;(2).

【解析】

(Ⅰ)消去参数,即可求得直线的普通方程,利用极坐标与直角坐标的互化公式,即可得到曲线的直角坐标方程;

(Ⅱ)将直线的参数方程代入曲线的直角坐标方程,利用直线参数方程中参数的几何意义,即可求解.

(Ⅰ)由直线的参数方程为,消去参数,可得直线的方程为,由曲线的极坐标方程,根据,曲线的方程为

(Ⅱ)将参数),代入1,得

所对应的参数分别为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,公比q0S2=2a2-2S3=a4-2,数列{an}满足a2=4b1nbn+1-n+1bn=n2+n,(nN*.

1)求数列{an}的通项公式;

2)证明数列{}为等差数列;

3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,AD1ADBCABBCBDDC,点EBC边的中点,将ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图②所示的几何体.

(1)求证:AB⊥平面ADC

(2)AC与平面ABD所成角的正切值为,求二面角BADE的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.

(1)求椭圆的方程;

(2)过点作直线交椭圆,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断上的单调性,并说明理由;

(2)求的极值;

(3)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(1)若,求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;

3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

1)直线与线段相交,其中,则的取值范围是

2)点关于直线的对称点为,则的坐标为

3)圆上恰有个点到直线的距离为

4)直线与抛物线交于两点,则以为直径的圆恰好与直线相切.

其中正确的命题有_________.(把所有正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案