精英家教网 > 高中数学 > 题目详情
(2009•淄博一模)函数y=f(x)的图象如图所示,则函数y=log0.2f(x)的图象大致是(  )
分析:由对数函数的性质得,外函数y=log0.2u的底数0<0.2<1,故在其定义域上为减函数,根据复合函数单调性“同增异减”的原则,不难给出复合函数的单调性,然后对答案逐一进行分析即可.
解答:解:∵0.2∈(0,1),∴log0.2x是减函数.
而f(x)在(0,1]上是减函数,在[1,2)上是增函数,
故log0.2f(x)在(0,1]上是增函数,而在[1,2)上是减函数,且函数在(0,2)上,函数值小于等于0.
分析四个图象,只有C答案符合要求
故选C
点评:本题考查的知识点是对数函数的性质,及复合函数单调性的确定,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淄博一模)已知命题p:?x∈R,cosx≤1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)若不等式组
x-y+5≥0
y≥a
0≤x≤3
表示的平面区域是一个三角形,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)已知m,n是不同的直线,α与β是不重合的平面,给出下列命题:
①若m∥α,则m平行与平面α内的无数条直线
②若α∥β,m?α,n?β,则m∥n
③若m⊥α,n⊥β,m∥n,则α∥β
④若α∥β,m?α,则m∥β
上面命题中,真命题的序号是
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[-2-
2
,2+
2
]
不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是(  )

查看答案和解析>>

同步练习册答案