精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于(  )
A.直线ACB.直线B1D1C.直线A1D1D.直线A1A

如图,直线CE垂直于直线B1D1

事实上,∵AC1为正方体,∴A1B1C1D1为正方形,连结B1D1
又∵E为为A1C1的中点,∴E∈B1D1
∴B1D1⊥C1E,
CC1⊥面A1B1C1D1,∴CC1⊥B1D1
又CC1∩C1E=C1,∴B1D1⊥面CC1E,而CE?面CC1E,∴直线CE垂直于直线B1D1
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DEBC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果两个平面分别平行于第三个平面,那么这两个平面的位置关系(  )
A.平行B.相交C.异面D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=2
3
,D、E分别为AA1、BC1的中点.
(Ⅰ)求证:DE⊥平面BB1C1C;
(Ⅱ)求三棱锥C-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是平行四边形ABCD所在平面外的一点,若P到四边的距离都相等,则四边形ABCD(  )
A.是正方形B.是长方形
C.有一个内切圆D.有一个外接圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.
(1)若C1M=
3
2
,求异面直线A1M和C1D1所成角的正切值;
(2)是否存在这样的点M使得BM⊥平面A1B1M?若存在,求出C1M的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(1)求证:PA⊥平面ABCD;
(2)求面EAC与面DAC所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案