精英家教网 > 高中数学 > 题目详情
如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(1)求证:PA⊥平面ABCD;
(2)求面EAC与面DAC所成的二面角的大小.
(I)证明:∵底面ABCD是菱形,且∠ABC=60°∴AB=AD=AC=a,
在△PAB中,PA2+AB2=2a2=PB2∴∠PAB=90°,即PA⊥AB,
同理,PA⊥AD∵AB∩AD=A∴PA⊥平面ABCD(6分)

(II)作EGPA交AD于G
∵PA⊥平面ABCD,∴EG⊥平面ABCD∴EG⊥AC,
作GH⊥AC于H,连接EH,
∴AC⊥平面EHG,∴EH⊥AC,∴∠EHG是面EAC与面DAC所成二面角的平面角(9分)
∵PE:ED=2:1,∴EG=
1
3
a,AG=
2
3
a

在△AGH中,GH=AG•sin60°=
2
3
3
2
=
3
3
a

tan∠EHG=
EG
GH
=
3
3
,∴∠EHG=
π
6

即面EAC与面DAC所成二面角的大小为
π
6
(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ平面PAO?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于(  )
A.直线ACB.直线B1D1C.直线A1D1D.直线A1A

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体A1C1-ABC中,四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线BC1与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在三棱锥P-ABC中,PA⊥BC,PB⊥AC,则点P在平面ABC上的射影为△ABC的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥平面ABCD,且PA=AD=2,E、F、H分别是线段PA、PD、AB的中点.
(1)求证:PD⊥平面AHF;
(2)求证:平面PBC平面EFH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,
(1)求证:DF平面ABC;
(2)求证:AF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EFAB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求证:NC平面MFD;
(Ⅱ)若EC=3,求证:ND⊥FC;
(Ⅲ)求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B平面B1CD,求A1D:DC1的值.

查看答案和解析>>

同步练习册答案