精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+1(a,b,为实数),F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0且对任意实数x均有f(x≥0)成立,求F(x)表达式;
(2)在(1)的条件下,当x∈[-3,3]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
分析:(1)由f(-1)=0,知b=a+1.由f(x)≥0恒成立,知△=b2-4a=(a+1)2-4a=(a-1)2≤0,由此能求出F(x)表达式.
(2)由f(x)=x2+2x+1,知g(x)=f(x)-kx=x2+(2-k)+1.由于g(x)在[-3,3]上是单调函数,能求出实数k的取值范围.
解答:解:(1)∵f(-1)=0,
∴b=a+1.
由f(x)≥0恒成立,
知△=b2-4a=(a+1)2-4a=(a-1)2≤0,
∴a=1.
从而f(x)=x2+2x+1.
∴F(x)=
(x+1)2(x>0)
-(x+1)2(x<0)

(2)由(1)可知f(x)=x2+2x+1,
∴g(x)=f(x)-kx=x2+(2-k)+1.
由于g(x)在[-3,3]上是单调函数,
-
2-k
2
≤-3或-
2-k
2
≥3,
解得k≤-4或k≥8.
点评:本昰考查函数的恒成立问题,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案