精英家教网 > 高中数学 > 题目详情
椭圆的焦点为F1F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )

A.7倍        B.5倍         C.4倍        D.3倍

解析:∵PF1的中点在y轴上,

PF2x轴.

∴|PF1|:|PF2|=7.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
α 2
+
y 2
α2-1
=1(a>1)
的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切.
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点.

查看答案和解析>>

科目:高中数学 来源:2010年北京大学附中高考数学考前猜题试卷(解析版) 题型:解答题

如图,已知椭圆的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城一中(东校区)高三一轮复习综合检测数学试卷(理科)(解析版) 题型:解答题

已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,
(1)若三角形FF1F2是边长为1的等边三角形,求“果圆”的方程;
(2)若|A1A|>|B1B|,求的取值范围;
(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年上海市高考数学试卷(理科)(解析版) 题型:解答题

已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,
(1)若三角形FF1F2是边长为1的等边三角形,求“果圆”的方程;
(2)若|A1A|>|B1B|,求的取值范围;
(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案