精英家教网 > 高中数学 > 题目详情

有四个函数:①y=sin2x;②y=|sinx|;③;④y=sin|x|。其中周期为T=p,且在上为增函数的是( )

A.②③           B.③④           C.①②④         D.①②③

答案:D
提示:

用排除法选择


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出四个命题:
①函数是定义域到值域的映射;       ②函数 f(x)=
x-3
+
2-x

③函数y=2x(x∈N)的图象是一条直线; ④函数 S=
x-3
+
3-x

其中,正确的有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xy中,O是坐标原点,设函数f(x)=k(x-2)+3的图象为直线l,且l与x轴、y轴分别交于A、B两点,给出下列四个命题:
①使△AOB的面积s=6的直线l仅有一条;
②使△AOB的面积s=8的直线l仅有两条;
③使△AOB的面积s=12的直线l仅有三条;
④使△AOB的面积s=20的直线l仅有四条.
其中所有真命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)己知函数f(x)=
a
x
-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(Ⅰ)判断函数F(x)在(0,3]上的单调性;
(Ⅱ)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(Ⅲ)是否存在实数m,使得函数y=f(
2a
x2+1
)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数f(x)=数学公式-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(I )判断函数F(x)在(0,3]上的单调性;
(II)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(III)是否存在实数m,使得函数y=f(数学公式)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年四川省绵阳市高考数学一模试卷(理科)(解析版) 题型:解答题

己知函数f(x)=-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(I )判断函数F(x)在(0,3]上的单调性;
(II)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(III)是否存在实数m,使得函数y=f()+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案