精英家教网 > 高中数学 > 题目详情
已知等差数列{an}各项都不相同,前3项和为18,且a1、a3、a7成等比数列
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{
1
bn
}
的前n项和Tn
(1)依题意,得
 a1+a2+a3=18,即3a2=18,解得a2=6
设数列{an}的公差为d,可知d≠0
可得a32=a1a7,即(6+d)2=(6-d)(6+5d)
解之得 d=2
∴an=a2+(n-2)d=2(n+1),即数列{an}的通项公式为an=2(n+1);
(2)由已知bn+1-bn=an
∴当n≥2时,bn-bn-1=an-1=2n,所以可知
bn-1-bn-2=2(n-1)
b2-b1=2×2
b1=2×1

以上各式进行累加,可得bn=2(1+2+3+…+n)=n(n+1)
又∵b1=2=1×(1+1),也满足bn=n(n+1)
∴可知当n∈N*时,bn=n(n+1)
因此
1
bn
=
1
n(n+1)
=
1
n
-
1
n+1

可得Tn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案