精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x3ax2bxc在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.

(1)求b的值      (2)求f(2)的取值范围


 (1)0 (2)

【解析】 (1)∵f(x)=-x3ax2bxc

f ′(x)=-3x2+2axb. …………3分

f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,

∴当x=0时,f(x)取到极小值,即f ′(0)=0,

b=0.

(2)由(1)知,f(x)=-x3ax2c

∵1是函数f(x)的一个零点,即f(1)=0,∴c=1-a.

f′(x)=-3x2+2ax=0的两个根分别为x1=0,x2.

又∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,且函数f(x)在R上有三个零点,

应是f(x)的一个极大值点,因此应有x2>1,即a>.

f(2)=-8+4a+(1-a)=3a-7>-.

f(2)的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


随机地向区域内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角小于的概率为            

查看答案和解析>>

科目:高中数学 来源: 题型:


 若=上是减函数,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源: 题型:


有下列四个命题:                                                      

①“若 , 则互为相反数”的逆命题;

②“全等三角形的面积相等”的否命题;

③“若 ,则有实根”的逆否命题;

④“存在,使成立”的否定.

其中真命题为                                                         (     )

A.①②              B.②③              C.①③           D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:


已知R上可导函数f(x)的图像如图所示,则不等式(x2-2x-3)f ′(x)>0,  的解集为_______

查看答案和解析>>

科目:高中数学 来源: 题型:


 方程的解所在的区间是(    )

A.          B.         C.        D.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知扇形的周长是6,中心角是1弧度,则该扇形的面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


下列命题中真命题的个数为:(      )

①命题“若,则x,y全为0”的逆命题;

②命题“全等三角形是相似三角形”的否命题;

③命题“若m>0,则有实根”的逆否命题;

④命题“在中,分别是角A、B、C所对的边长,若,则”的逆否命题。

A. 1                B. 2                C. 3                D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:


函数的零点所在的大致区间是(  )(参考数据

A      B      C     D

查看答案和解析>>

同步练习册答案