精英家教网 > 高中数学 > 题目详情

【题目】已知函数,设关于的方程个不同的实数解,则的所有可能的值为( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

【答案】A

【解析】f′(x)=(x﹣1)(x+3)ex所以f(x)在(﹣∞,﹣3)和(1,+∞)上单调递增,(﹣3,1)上单调递减,又当x→﹣∞时f(x)→0,x→+∞时f(x)→+∞,故f(x)的图象大致为:

f(x)=t,则方程必有两个实根t1,t2(t1t2)且

t1=﹣2e时恰有,此时f(x)=t11个根,f(x)=t22个根;

t1﹣2e时必有,此时f(x)=t1无根,f(x)=t23个根;

当﹣2et10时必有,此时f(x)=t12个根,f(x)=t21个根;

综上,对任意mR,方程均有3个根.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,2sin(A+B)﹣ =0,c=
(1)求角C的大小;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的短轴长为2,以为中点的弦经过左焦点,其中点不与坐标原点重合,射线与以圆心的圆交于点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若四边形是矩形,求圆的半径;

(Ⅲ)若圆的半径为2,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an1表示an
(2)求数列{an}的通项公式;
(3)设Tn= + + +…+ ,求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的值域为(﹣∞,0]∪[4,+∞),则a的值是(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,设右焦点为,过原点的直线与椭圆交于两点,线段的中点为,线段的中点为,且.

(1)求弦的长;

(2)当直线的斜率,且直线时, 交椭圆于,若点在第一象限,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(
A.
B. 与g(x)=2x﹣1
C.f(x)=x0与g(x)=1
D.f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)讨论的单调性;

(3)设过两点的直线的斜率为,其中为曲线上的任意两点,并且,若恒成立,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且 ,f(0)=0
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求证:方程f(x)=lnx至少有一根在区间(1,3).

查看答案和解析>>

同步练习册答案