精英家教网 > 高中数学 > 题目详情
17.已知x2>x${\;}^{\frac{1}{2}}$,则x的取值范围是(  )
A.RB.x<1C.x>0D.x>1

分析 由题意可得$\left\{\begin{array}{l}{x≥0}\\{{x}^{4}>x}\end{array}\right.$,由此求得x的范围.

解答 解:∵x2>x${\;}^{\frac{1}{2}}$,∴$\left\{\begin{array}{l}{x≥0}\\{{x}^{4}>x}\end{array}\right.$,求得x>1,
故选:D.

点评 本题主要考查其它不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=$\sqrt{2}$,AB=AC.
(1)求证:BE⊥面ABC;
(2)设△ABC为等边三角形,求直线CE与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②在平面内,设A,B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-x+1=0的两根可分别作为椭圆和双曲线离心率;
④过双曲线${x^2}-\frac{y^2}{2}=1$的右焦点F作直线l交双曲线与A,B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1)如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为12.5;
(2)在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是残差平方和;
(3)如果根据性别与是否爱好运动的列联表得到K2≈3.852,所以判断性别与运动有关,那么这种判断犯错的可能性不超过5%;
 P(K2≥k) 0.100 0.050 0.010
 k 2.706 3.841 6.635
(4)设有一个回归方程为$\widehat{y}$=3-5x,则变量x增加一个单位时y平均减少5个单位;
(5)两个变量x与y的回归模型中分别选择了4个不同模型,它们的相关指数R2如下,模型1的相关指数R2为0.98,模型2的相关指数R2为0.80,模型3的相关指数R2为0.50,模型4的相关指数R2为0.25.其中拟合效果最好的模型是模型4.其中正确命题的序号为(1)(2)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$\overrightarrow{a}$,$\overrightarrow{b}$是任意的两个向量,λ∈R,给出下面四个结论:
①若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{b}$=λ$\overrightarrow{a}$;
②若$\overrightarrow{b}$=-λ$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$共线;
③若$\overrightarrow{a}$=λ$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$共线;
④当$\overrightarrow{b}$≠0时,$\overrightarrow{a}$与$\overrightarrow{b}$共线的充要条件是有且只有一个实数λ=λ1,使得$\overrightarrow{a}$=λ1$\overrightarrow{b}$.
其中正确的结论有②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{3}{{a}^{x}+1}$+sinx-2,其中a>0且a≠1,若f(2)=5,则f(-2)=(  )
A.-6B.-5C.-3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展开式中,第6项为常数项.
(1)求展开式中各项系数的和;
(2)求C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$的值;
(3)求展开式中系数绝对值最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos(2x+$\frac{π}{3}$),则下列说法正确的是(  )
A.函数f(x)=cos(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位长度可得到y=sin2x的图象
B.x=$\frac{π}{6}$是函数f(x)的一个对称轴
C.($\frac{π}{12}$,0)是函数f(x)的一个对称中心
D.函数f(x)=cos(2x+$\frac{π}{3}$)在[0,$\frac{π}{2}$]上的最小值为-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某劳动就业服务中心的7名志愿者准备安排6人在周六、周日两天在街头做劳动就业指导,若每天安排3人,则不同的安排方案共有140种.(用数字作答)

查看答案和解析>>

同步练习册答案