精英家教网 > 高中数学 > 题目详情
8.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②在平面内,设A,B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-x+1=0的两根可分别作为椭圆和双曲线离心率;
④过双曲线${x^2}-\frac{y^2}{2}=1$的右焦点F作直线l交双曲线与A,B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为①④.

分析 根据双曲线、椭圆标准方程判断①;根据椭圆的定义判断②;根据椭圆和双曲线的离心率的范围判断③;过右焦点的直线与双曲线交于两点可分为两种情况,一种是两点都在右支上,一种是与左右两支各有一交点,分别确定两种情况各有几条直线满足条件即可判断④

解答 解:对于①:双曲线c2=a2+b2=25,椭圆c2=a2-b2=25,双曲线与椭圆的焦点坐标都是(±5,0),故①正确;
对于②:根据椭圆定义,只有k>|AB|时,动点P的轨迹才是椭圆,故②不正确;
对于③:方程2x2-x+1=0的两根${x}_{1}=\frac{1}{2},{x}_{2}=1$,而双曲线的离心率e>1,故③不正确;
对于④:过右焦点的直线与双曲线交于两点可分为两种情况,一种是两点都在右支上,一种是与左右两支各有一交点.
由双曲线的方程可知,a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,故双曲线的实轴长2a=2,则与双曲线相交于左右两支,且|AB|=4的直线有2条;
若直线l过右焦点且垂直于x轴时,直线l的方程为x=$\sqrt{3}$,A($\sqrt{3}$,-2),B($\sqrt{3}$,2),则|AB|=4,故与右支有两个交点时,直线只有一条.
综上可知,满足条件的直线共有3条,故④正确
故答案为:①④

点评 本题主要考查了圆锥曲线的共同特征,考查椭圆和双曲线的定义、标准方程、离心率及过焦点弦长问题,解题时要准确理解概念,一些常见的结论需要牢记,只有这样解题时才能快速准确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)=$\frac{11}{20}$,x0∈[$\frac{π}{6}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆mx2+5y2=5m(m>0)的离心率为$e=\frac{{\sqrt{10}}}{5}$,求m的值,并求椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=x3+ax+b在区间[-1,1]上为减函数,在(1,+∞)为增函数则a等于(  )
A.3B.-3C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若cos(π+α)=-$\frac{1}{2}$,$\frac{3}{2}$π<α<2π,则sin(3π-α)等于-$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若定义在[-2010,2010]上的函数f(x)满足:对任意x1,x2∈[-2010,2010],有f(x1+x2)=f(x1)+f(x2)-2009,且x>0时,有f(x)>2009,f(x)的最大值、最小值分别为M,N,则M+N=4018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数既是奇函数,又在区间[-1,1]上单调递减的是(  )
A.f(x)=sinxB.f(x)=-|x+1|
C.$f(x)=ln\frac{2-x}{2+x}$D.f(x)=$\frac{1}{2}$(ax+a-x),(a>0,a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x2>x${\;}^{\frac{1}{2}}$,则x的取值范围是(  )
A.RB.x<1C.x>0D.x>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=4且$\overrightarrow a$•$\overrightarrow b$=2,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案