精英家教网 > 高中数学 > 题目详情

某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;
(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?

(Ⅰ)P=1-.
(Ⅱ)要使促销方案对商场有利,应使顾客获奖奖金数的期望值不大于商场的提价数额,因此应有1.5x≤90,所以x≤60,故商场应将中奖奖金数额最高定为60元,才能使促销方案对自己有利.

解析试题分析:(Ⅰ)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共可以有种不同的选法. 选出的3种商品中,没有日用商品的选法有种,所以选出的3种商品中至少有一种日用商品的概率为P=1-=1-.
(Ⅱ)假设商场将中奖奖金数额定为x元,则顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为,0,x,2x,3x.
ξ=0时表示顾客在三次抽奖中都没有获奖,所以P(ξ=0)=()3=,
同理可得P(ξ=x)=()()2=,
P(ξ=2x)=()2()=,P(ξ=3x)=()3=.
于是顾客在三次抽奖中所获得的奖金总额的期望是
Eξ=0×+x·+2x·+3x·=1.5x.
要使促销方案对商场有利,应使顾客获奖奖金数的期望值不大于商场的提价数额,因此应有1.5x≤90,所以x≤60,故商场应将中奖奖金数额最高定为60元,才能使促销方案对自己有利.
考点:古典概型概率的计算,互斥(对立)事件的概率计算,数学期望的应用。
点评:中档题,本题综合性较强,综合考查古典概型概率的计算,互斥(对立)事件的概率计算,数学期望的应用,及利用数学知识解决实际问题的能力。求出顾客在三次抽奖中所获得的奖金总额的期望值,与商场的提价数额比较,即可求得结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数 ”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数,当时,,且对任意实数

求证:
(2)证明:是R上的增函数;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2 (x≠0).
(1)判断f(x)的奇偶性,并说明理由;
(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.

(1)将总造价y表示为关于的函数;
(2)问花园如何设计,总造价最少?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:

所用的时间(天数)
10
11
12
13
通过公路1的频数
20
40
20
20
通过公路2的频数
10
40
40
10
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发。
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担。如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天销售商将少支付给生产商2万元。如果汽车A、B长期按(1)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大。
(注:毛利润=(销售商支付给生产商的费用)—(一次性费用))

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量(件)之间近似满足关系:
(其中为小于96的正整常数)
(注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量。
试将生产这种仪器每天的赢利T(元)表示为日产量(件的函数);
当日产量为多少时,可获得最大利润?

查看答案和解析>>

同步练习册答案