精英家教网 > 高中数学 > 题目详情

是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数 ”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.

(1)
(2)所有满足题设的都是“2阶负函数”

解析试题分析:解:(1)依题意,上单调递增,
 恒成立,得,             2分
因为,所以.                        4分
而当时,显然在恒成立,
所以.                                       6分
(2)①先证
若不存在正实数,使得,则恒成立.     8分
假设存在正实数,使得,则有
由题意,当时,,可得上单调递增,
时,恒成立,即恒成立,
故必存在,使得(其中为任意常数),
这与恒成立(即有上界)矛盾,故假设不成立,
所以当时,,即;            13分
②再证无解:
假设存在正实数,使得
则对于任意,有,即有
这与①矛盾,故假设不成立,
所以无解,
综上得,即
故所有满足题设的都是“2阶负函数”.             16分
考点:新定义
点评:主要是考查了新定义的运用,以及函数与方程的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)已知函数)在区间上有最大值和最小值.设,       
(1)求的值;
(2)若不等式上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为大于零的常数,,函数的图像与坐标轴交点处的切线为,函数的图像与直线交点处的切线为,且.
(I)若在闭区间上存在使不等式成立,求实数的取值范围;
(II)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的偏差.求证:函数在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数上的单调;
(2)若上的值域是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;
(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?

查看答案和解析>>

同步练习册答案