已知函数
.
(1)求证:
;
(2)解不等式![]()
科目:高中数学 来源: 题型:解答题
已知二次函数
.
(1)若对任意
、
,且
,都有
,求证:关于
的方程![]()
有两个不相等的实数根且必有一个根属于
;
(2)若关于
的方程
在
上的根为
,且
,设函数
的图象的对称轴方程为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
⑴ 求函数
的单调区间;
⑵ 如果对于任意的
,
总成立,求实数
的取值范围;
⑶ 设函数
,
. 过点
作函数
图像的所有切线,令各切点的横坐标构成数列
,求数列
的所有项之和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)已知函数
,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了降低能源损耗,某城市对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
是定义在
的可导函数,且不恒为0,记
.若对定义域内的每一个
,总有
,则称
为“
阶负函数 ”;若对定义域内的每一个
,总有
,则称
为“
阶不减函数”(
为函数
的导函数).
(1)若
既是“1阶负函数”,又是“1阶不减函数”,求实数
的取值范围;
(2)对任给的“2阶不减函数”
,如果存在常数
,使得
恒成立,试判断
是否为“2阶负函数”?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com