精英家教网 > 高中数学 > 题目详情

已知函数是奇函数,并且函数的图像经过点(1,3).
(1)求实数的值;
(2)求函数的值域。

(1)a=2,b=0。
(2)函数的值域为

解析试题分析:(1)函数是奇函数,则
…(3分)又函数的图像经过点(1,3),
∴a=2 …(6分)
(2)由(1)知………(7分)
时,当且仅当时取等号…(10分)
时,当且仅当时取等号…(13分)综上可知函数的值域为……(12分)
考点:函数的奇偶性,待定系数法,均值定理的应用。
点评:中档题,为研究函数的性质,首先需要确定函数的解析式,利用了待定系数法。确定函数的值域,方法较多,如,配方法、换元法、单调性质法,均值定理、导数法等。本题应用均值定理,要注意“一正,二定,三相等”,缺一不可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:
为常数。当万元时,万元;
万元时,万元。 (参考数据:
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数上的单调;
(2)若上的值域是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

养路处建造无底的圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米。养路处拟另建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来增加4米(高不变);二是高度增加4米(底面直径不变)。
分别计算按这两种方案所建的仓库的体积;
分别计算按这两种方案所建的仓库的表面积;
哪个方案更经济些?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(I)记的表达式;
(II)是否存在,使函数在区间内的图像上存在两点,在该两点处的切线相互垂直?若存在,求的取值范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案