精英家教网 > 高中数学 > 题目详情

如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。

(1)证明如下(2)

解析试题分析:解:(1)∵

(2)∵f(3)=1,f(a)>f(a-1)+2
,∴
∵f(x)是增函数,
,∴,又a>0,a-1>0
∴a的取值范围是
考点:函数的单调性
点评:看一个函数在一个区间内是增函数还是减函数,只要看这个函数在这个区间内y随x的变化而怎样变化,若y随x的增大而增大,则函数是增函数;若y随x的增大而增小,则函数是减函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(14分)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点(1,3).
(1)求实数的值;
(2)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数,当时,,且对任意实数

求证:
(2)证明:是R上的增函数;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.

(1)将总造价y表示为关于的函数;
(2)问花园如何设计,总造价最少?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当居民用水超过4吨时,超过部分每吨3.00元。若某月某用户用水量为x吨,交水费为y元。
(1)求y关于x的函数关系
(2)若某用户某月交水费为31.2元,求该用户该月的用水量。

查看答案和解析>>

同步练习册答案