精英家教网 > 高中数学 > 题目详情

已知,函数
(I)记的表达式;
(II)是否存在,使函数在区间内的图像上存在两点,在该两点处的切线相互垂直?若存在,求的取值范围;若不存在,请说明理由。

(I)(II)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若,求实数的取值范围;
(Ⅱ)已知的部分函数值由下表给出,











 求证:
(Ⅲ)定义集合
请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在,使得成立,求实数的取值范围;
(2)解关于的不等式
(3)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求),每小时可获得利润是元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点(1,3).
(1)求实数的值;
(2)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,解不等式
(2)若,解关于的不等式

查看答案和解析>>

同步练习册答案