为了降低能源损耗,某城市对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
科目:高中数学 来源: 题型:解答题
某投资公司年初用万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出万元,第二年需要支出万元,第三年需要支出万元,……,每年都比上一年增加支出万元,而每年的生产收入都为万元.假设这套生产设备投入使用年,,生产成本等于生产设备购置费与这年生产产品相关的各种配套费用的和,生产总利润等于这年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以万元的价格出售该套设备;
方案二:当生产总利润取得最大值时,以万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中为大于零的常数,,函数的图像与坐标轴交点处的切线为,函数的图像与直线交点处的切线为,且.
(I)若在闭区间上存在使不等式成立,求实数的取值范围;
(II)对于函数和公共定义域内的任意实数,我们把的值称为两函数在处的偏差.求证:函数和在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(Ⅰ)求这次行车总费用关于的表达式;
(Ⅱ)当为何值时,这次行车的总费用最低,并求出最低费用的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com