已知函数
.
⑴ 求函数
的单调区间;
⑵ 如果对于任意的
,
总成立,求实数
的取值范围;
⑶ 设函数
,
. 过点
作函数
图像的所有切线,令各切点的横坐标构成数列
,求数列
的所有项之和
的值.
(1)![]()
.;(2)
.(3)
.
解析试题分析:(1)利用求导的基本思路求解,注意导数的四则运算;(2)利用转化思想将问题转化为
总成立,只需
时
.借助求导,研究
的性质,通过对参数k的讨论和单调性的分析探求实数
的取值范围;(3)化简函数
,利用导数的几何含义求解曲线的切线方程,化简得到
,分析得到
,
,则这两个函数的图像均关于点
对称进行求解数列
的所有项之和
的值.
试题解析:(1) 由于
,所以
. (2分)
当
,即
时,
;
当
,即
时,
.
所以
的单调递增区间为![]()
,
单调递减区间为![]()
. (4分)
(2) 令
,要使
总成立,只需
时
.
对
求导得
,
令
,则
,(
)
所以
在
上为增函数,所以
. (6分)
对
分类讨论:
① 当
时,
恒成立,所以
在
上为增函数,所以
,即
恒成立;
② 当
时,
在上有实根
,因为
在
上为增函数,
所以当
时,
,所以
,不符合题意;
③ 当
时,
恒成立,所以
在
上为减函数,则
,不符合题意.
综合①②③可得,所求的实数
的取值范围是
. (9分)
(3) 因为
,所以
,
设切点坐标为
,则斜率为
,
切线方程为
, &n
科目:高中数学 来源: 题型:解答题
已知函数
(
为常数,
为自然对数的底)
(1)当
时,求
的单调区间;
(2)若函数
在
上无零点,求
的最小值;
(3)若对任意的
,在
上存在两个不同的
使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值
万元与投入
万元之间满足:
为常数。当
万元时,
万元;
当
万元时,
万元。 (参考数据:
)
(1)求
的解析式;
(2)求该景点改造升级后旅游利润
的最大值。(利润=旅游增加值-投入)。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某投资公司年初用
万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出
万元,第二年需要支出
万元,第三年需要支出
万元,……,每年都比上一年增加支出
万元,而每年的生产收入都为
万元.假设这套生产设备投入使用
年,
,生产成本等于生产设备购置费与这
年生产产品相关的各种配套费用的和,生产总利润
等于这
年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若
,求
的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以
万元的价格出售该套设备;
方案二:当生产总利润
取得最大值时,以
万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,其中
为大于零的常数,
,函数
的图像与坐标轴交点处的切线为
,函数
的图像与直线
交点处的切线为
,且
.
(I)若在闭区间
上存在
使不等式
成立,求实数
的取值范围;
(II)对于函数
和
公共定义域内的任意实数
,我们把
的值称为两函数在
处的偏差.求证:函数
和
在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com