精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

1)若曲线在点处的切线与直线垂直,求函数的单调区间;

2)若对于任意,都有成立,试求a的取值范围.

【答案】1)单调增区间是,单调减区间是 2.

【解析】

1)对求导,由曲线在点处的切线与直线垂直,可得,可得值,代入可得函数的单调区间;

2)对求导,可得其递增递减区间,可得其极小值点,函数取得最小值,由对于任意,成立,只需最小值大于,可得a的取值范围.

解:(1)直线的斜率为1,函数的定义域为

因为

所以,所以

所以

解得;由解得

所以的单调增区间是,单调减区间是

2

解得;由解得

所以在区间上单调递增,在区间上单调递减,

所以当时,函数取得最小值

因为对于任意都有成立,

只需即可.

,解得

所以a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着网络和智能手机的普及与快速发展,许多可以解答各学科问题的搜题软件走红.有教育工作者认为:网搜答案可以起到拓展思路的作用,但是对多数学生来讲,容易产生依赖心理,对学习能力造成损害.为了了解网络搜题在学生中的使用情况,某校对学生在一周时间内进行网络搜题的频数进行了问卷调查,并从参与调查的学生中抽取了男、女学生各50人进行抽样分析,得到如下样本频数分布表:

将学生在一周时间内进行网络搜题频数超过20次的行为视为经常使用网络搜题,不超过20次的视为偶尔或不用网络搜题”.

1)根据已有数据,完成下列列联表(单位:人)中数据的填写,并判断是否在犯错误的概率不超过1%的前提下有把握认为使用网络搜题与性别有关?

2)将上述调查所得到的频率视为概率,从该校所有参与调查的学生中,采用随机抽样的方法每次抽取一个人,抽取4人,记经常使用网络搜题的人数为,若每次抽取的结果是相互独立的,求随机变量的分布列和数学期望.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了两个城市各100名观众,得到下面的列联表.

非常喜爱

喜爱

合计

城市

60

100

城市

30

合计

200

完成上表,并根据以上数据,判断是否有的把握认为观众的喜爱程度与所处的城市有关?

附参考公式和数据:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处切线的方程;

(2)当时,求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)万元.

(1)若使每台机器人的平均成本最低,问应买多少台?

(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q(m) (单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数,.

(1) 若是函数的导函数,当时,解关于的不等式

(2) 若 上是单调增函数,求的取值范围;

(3) 当时,求整数的所有值,使方程上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+c(a≠0),满足条件f(x+1)-f(x)=2x(x∈R),且f(0)=1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)当x≥0时,f(x)≥mx-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆E1ab0)上一动点P向圆Ox2+y2b2引两条切线PAPB,切点分别是AB.直线AB分别与x轴,y轴交于点MNO为坐标原点).

1)若在椭圆E上存在点P,满足PAPB,求椭圆E的离心率的取值范围;

2)求证:在椭圆E内,存在一点C满足|CO||CA||CP||CB|

3)若椭圆E的短轴长为2,△MON面积的最小值为,求椭圆E的方程.

查看答案和解析>>

同步练习册答案