精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)若数学公式是函数,y=F(x)的极值点,求实数a的值;
(2)若函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率数学公式恒成立,求实数a的取值范围;
(3)若函数y=f(x)在[1,2]上有两个零点,求实数a的取值范围.

解:(2分)
(1)且a>0,∴a=1(4分)
(2)对任意的x∈(0,3]恒成立(5分)
∴2a2≥-x2+2x对任意的x∈(0,3]恒成立,
∴2a2≥(-x2+2x)max,而当x=1时,-x2+2x=-(x-1)2+1取最大值为1,
∴2a2≥1,且a>0,∴(8分)
(3)因为函数在[1,2]上有两个零点,
所以方程a2=-x2+3x在x∈[1,2]上有两个不等实根(a>0)(10分)
又因为函数在x∈[1,2]内的值域为(12分)
由函数图象可得:,a>0,所以:
即实数a的取值范围是(14分)
分析:先求出及其导数
(1)是函数,y=F(x)的极值点,故由此方程求a即可
(2)函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率恒成立,由导数的几何意义知,此条件可以转化为导函数在x∈(0,3]的最大值小于等于
(3)可将函数在[1,2]上有两个零点的问题转化为相应的方程有两个根,分离出参数a,得到a2=-x2+3x在x∈[1,2]上有两个不等实根,由二次函数的性质求得-x2+3x在x∈[1,2]上的值域,根据函数的图象即可得到参数a所满足的条件,a>0,解之即得所求的实数a的取值范围
点评:本题考点是利用导数研究函数的极值,考查了求导的运算,极值存在的条件,导数的几何意义,以及函数的零点与相应方程的根的关系,二次函数的图象与性质等知识,本题综合性强,转化灵活,能答题者观察转化的能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年上海市长宁区高三上学期教学质量检测理科数学试卷(解析版) 题型:解答题

已知函数

(1)若是常数,问当满足什么条件时,函数有最大值,并求出取最大值时的值;

(2)是否存在实数对同时满足条件:(甲)取最大值时的值与取最小值的值相同,(乙)

(3)把满足条件(甲)的实数对的集合记作A,设,求使的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市十三校高三第一次联考数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)若是最小正周期为π的偶函数,求ω和θ的值;
(2)若g(x)=f(3x)在上是增函数,求ω的最大值;并求此时f(x)在[0,π]上的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年上海市四区(静安、杨浦、青浦、宝山)高考二模理科数学试卷(解析版) 题型:解答题

已知函数

(1)若是偶函数,在定义域上恒成立,求实数的取值范围;

(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一上学期期中数学试卷(解析版) 题型:解答题

已知函数

(1)若是偶函数,求的值。

(2)设,求的最小值。

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

已知函数

(1)若的极值点,求值;

(2)若函数上是增函数,求实数的取值范围;

 

查看答案和解析>>

同步练习册答案