精英家教网 > 高中数学 > 题目详情
观察以下各式:
sin230°+cos260°+sin30°cos60°=
3
4

sin220°+cos250°+sin20°cos50°=
3
4

sin215°+cos245°+sin15°cos45°=
3
4

sin25°+cos235°+sin5°cos35°=
3
4

分析以上各式的共同特点,则具有一般规律的等式为
 
考点:归纳推理
专题:推理和证明
分析:我们可以发现等式左边余弦均为正弦度数加30°,右边是常数,由此不难得到结论.
解答: 解:观察以下各式:
∵sin230°+cos260°+sin30°cos60°=
3
4
,sin220°+cos250°+sin20°cos50°=
3
4

∴sin230°+cos2(30°+30°)+sin30°cos(30°+30°)=
3
4
,sin220°+cos2(20°+30°)+sin20°cos(20°+30°)=
3
4

 于是根据各式的共同特点,则具有一般规律的等式可得出sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

故答案为:sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4
点评:本题主要考查了归纳推理,通过观察个别情况发现某些相同性质,从已知的相同性质中推出一个明确表达的一般性命题(猜想),属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,F是AB的中点,AC=BC=1,AA1=2.
(1)求证:CF∥平面AB1E;
(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1底面边长为2,AA1=4
2
,AC1=2AF,AD⊥B1D,AE=
1
2
B1E.
(1)证明:DF∥平面ABB1A1
(2)求三棱锥A-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l的方程为
.
1    0     2
x    2     3
y   -1   2
.
=0,则直线l的一个法向量是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+2与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线没有公共点,则双曲线离心率的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M=
2-1
-43
,N=
4-1
-31
,求二阶矩阵X,使得MX=N,则二阶矩阵X=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,真命题的序号有
 
.(写出所有真命题的序号)
①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;
②命题“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1≥0”;
③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;
④函数f(x)=lnx+x-
3
2
在区间(1,2)上有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,公比为q,且
lim
n→∞
(a2+a3+…+an)=2,则首项a1的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+ax
有三个单调区间,则a取值范围是
 

查看答案和解析>>

同步练习册答案