精英家教网 > 高中数学 > 题目详情
9.在正三棱锥内有一半球,其底面与正三棱锥的底面在同一平面内,正三棱锥的三个侧面都和半球相切.如果半球的半径等于1,正三棱锥的底面边长为$3\sqrt{2}$,则正三棱锥的高等于(  )
A.$\sqrt{2}$B.$2\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{3}$

分析 画出图形,设三棱锥的高 PO=x,在纵切面图形可看出,Rt△PEO∽Rt△POD,即可求出高的值.

解答 解:根据题意,画出图形如下,
其中,立体图形只画出了半球的底面.
∵正三棱锥的底面边长为$3\sqrt{2}$,
∴OD=$\frac{\sqrt{6}}{2}$,
设三棱锥的高 PO=x,在纵切面图形可看出,Rt△PEO∽Rt△POD,
∴$\sqrt{\frac{3}{2}+{x}^{2}}•1=\frac{\sqrt{6}}{2}•x$,
∴x=$\sqrt{3}$
故选:D.

点评 本题考查几何体的内接球的问题,三角形相似的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“2x>1”是“x>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$\int_0^n{|{x-5}|dx=25}$,则(2x-1)n的二项展开式中x2的系数为180.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的内角A,B,C的对边分别为a,b,c,sin2B=2sinAsinC.
(1)若△ABC为等腰三角形,求顶角C的余弦值;
(2)若△ABC是以B为直角顶点的三角形,且$|BC|=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点为F1(-c,0),F2(c,0),若直线y=2x与双曲线的一个交点的横坐标为c,则双曲线的离心率为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设△AnBnCn的三边长分别为an,bn,cn,n=1,2,3,…,若b1>c1,b1+c1=2a1,an+1=an,${b_{n+1}}=\frac{{{a_n}+{c_n}}}{2}$,${c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,则∠An的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,则2y-x的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={-2,-1,0,1,2},B={x|$\frac{x+1}{x-2}$<0},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,点N在棱AA1上,且满足AN=2NA1,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度的取值范围是(  )
A.$[{\sqrt{17},5}]$B.[4,5]C.[3,5]D.$[{3,\sqrt{17}}]$

查看答案和解析>>

同步练习册答案